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Abstract: This paper deals with inequalities for the Stolarsky and Gini
means. Inequalities involving the means in question and their products are
established. Some of these results provide refinements of known inequalities
for the particular means of two variables. The Ky Fan type inequalities for

the means discussed in this paper are also obtained.

1. Introduction and notation

This paper deals with the inequalities for two families of the two-
parameter means of variables > 0 and y > 0. In order to avoid
trivialities we will always assume that = £ y.

First class of means studied in this paper was introduced by K.
Stolarsky [20]. For a,b € R they are denoted by D, (:,-) and defined
as
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Stolarsky means are sometimes called the difference means (see, e.g.,
[10], [8)).

The identric, logarithmic, and power means of order a (a # 0) will
be denoted by I,, L., and A,, respectively. They are all contained in
the family of means under discussion. We have I, = D, ,, L, = D, g,
and Ag = Dgg,q. When a = 1 we will write I, L, and A instead of I,
Ly, and A;. There is a simple relationship between means of order a
(a # 1) and those of order one. We have

Ia(.’L’, y) = [I(maa ya)]l/a
with similar formulas for the remaining means mentioned above. Fi-
nally, the geometric mean of z and y is G(z,y) = Do o(z,y)-
Second family of bivariate means studied here was introduced by
C. Gini [4]. Throughout the sequel they will be denoted by S, 4(:,")
and they are defined as follows

( $a+ya 1/(a—b)
e
Sap(z,y) = < a @
(%, ) exp(x Inz +y 1ny>’ G=b#0
xﬂ_f_yd
\\/xy) az:b:O

Gini means are also called the sum means. It follows from (1.2) that
So,—1 = H— the harmonic mean, Sy o = G, and S; 0 = A. The following
mean J = Sy ; will play an important role in the discussion that follows.

Alzer and Ruscheweyh [1] have proven that the joint members
in the families of the Stolarsky and Gini means are exactly the power
means.

This paper is organized as follows. Basic properties of the means
under discussion together with the comparison theorems are given in
Section 2. They are included here for the sake of presentation. The
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main results of this paper are contained in Sections 3 in 4. Some of
the results obtained in Section 3 provide generalizations of certain in-
equalities for the particular means. The Ky Fan type inequalities for
the Stolarsky and Gini means are derived in Section 4.

2. Basic properties and the comparison theorems
for D,;, and S,;

For the reader’s convenience we give here a list of basic properties
of the Stolarsky and Gini means. They follow directly from the defining
formulas (1.1) and (1.2) and most of them can be found in [5] and [20].
Although they are formulated for the Stolarsky means they remain valid
for the Gini means, too. In what follows we assume that a,b,c € R.

(P1) Dgp (-,-) is symmetric in its parameters, i.e., Dgp (-,-) =
= Db,a ('7 )
(P2) D. .(z,y) is symmetric in the variables z and y, i.e., D. .(z,y) =
= D..(y,2).

(P3) a,b(m y) is a homogeneous function of order one in its vari-
ables, i.e., Dy p(Az, Ay) = ADg p(z,y), A > 0.
(P4) Do p(z°y°) = [Dac,be(, y)]%
(P5) Da, b(m y)D—a - ( 7y) =Y.
(P6) Doy(a*,4°) = (29)° Do (2,5 ).
(P7) D ( ) Sa,5(Z, Y) :Da,b(x27y2) :D%a,zb(l‘:y)'
(P8) Da,b increases with increase in either a or b.
(P9) If @ > 0 and b > 0, then D, is log-concave in both a and b. If
a <0 and b <0, then D, ; is log-convex in both a and b.
Property (P8) for the Stolarsky means is established in [5] and
[20]. F. Qi [13] has established (P8) for the Gini means. Logarithmic
concavity (convexity) property for the Stolarsky means is established
n [12].
(P10) If a # b, then

b b
1
InDgp = —5—_1—_—5/ Inl;dt and InS,p= P / In J; dt.

First formula in (P10) is derived in [20] while the proof of the
second one is an elementary exercise in calculus.

We shall prove now the property (P9) for the Gini means. The
following result will be utilized.
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Lemma 2.1 [14]. Let f : [a,b] — R be a twice differentiable function. If
f is increasing (decreasing) and/or convex (concave), then the function

oot = ;= [ o

is increasing (decreasing) and/or conver (concave) function in both
variables a and b.

Let r = (z/y)* and let u(t) = InJ; (¢ € R). It follows from (1.2)
that tu(t) = tlnz — (In7)/(r +1). Hence t2p/(¢) = r[(lnr)/(r + 1)]> >
> 0 and 34/ (t) = r(1 — 7)[(lnr)/(r + 1)]*> < 0 for all ¢ # 0. Thus
the function u(t) is strictly concave for ¢ > 0 and strictly convex or
t < 0. This in conjunction with the Lemma 2.1 and the second formula
of (P10) gives the desired result.

We close this section with three comparison theorems for the
means under discussion. The following functions will be used through-
out the sequel. Let

|z| = |y]
—, T Fy
k(il,',y): r—y

sign(z), z=uy

and let
L(z,y), z>0,y>0
(z,y) =
0, z-y=20,
where L(z,y) = goiay (¢ #¥), L(z,z) = z is the logarithmic mean
of z and y. Function I(z,y) is defined for nonnegative values of =z and
y only.

The comparison theorem for the Stolarsky means reads as follows.
Theorem A ([10], [6]). Let a,b,c,d € R. Then the comparison in-
equality

Da,b(ma y) S DC,d(ma y)
holds true if and only if a +b < c+d and
l(a,b) < l(c,d) if 0 < min(a,b,c,d),
k(a,b) < k(c,d) if min(a,b,c,d) < 0 < max(a,b,c,d),
—(~a,—b) < =l(—¢,—d) if max(a,b,c,d)<0.

A comparison result for the Gini means is contained in the follow-
ing.
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Theorem B ([9]). Let a,b,c,d € R. Then the comparison inequality

Sa,b(mv y) S Sc,d(xa y)
15 valid if and only ifa+b<c+d and

min(a, b) < min(c,d) if 0 < min(a,b,c,d),
k(a,b) < k(c,d) if min(a,b,c,d) < 0 < max(a,b,c,d),
max(a,b) < max(c,d) if max(a,b,c,d) <0.

A comparison result for the Stolarsky and Gini means is obtained
in [8].
Theorem C. Leta,beR. Ifa+b>0, then

Da,b(ll) y) < Sa,b(xa y)

with the inequality reversed if a + b < 0. Moreover, Dgp(z,y) =
= Sap(z,y) if and only if a+b=0.

A new proof of Th. C is included below.
Proof. There is nothing to prove when a + b = 0 because D, _, =
= S4,—a = G. Define r = (z/y)* and ¢(t) = InI; —In J;. One can verify
easily that

2rinr H(r,1)
tp(t) = ———— — 1= -1<90
#(%) (r+1)(r—1) L(r,1) <5
where that last inequality follows from the harmonic-logarithmic mean
inequality. Also, ¢(—t) = —¢(t) for ¢ € R. Hence ¢(t) < 0 if ¢ > 0 and

#(t) > 0 for t < 0. Let a # b. Making use of (P10) we obtain

1 b
tha,,b —In Sa,,b = m/ ¢(t)dt < 0,
a

where the last inequality holds true provided a + b > 0. The same
argument can be employed to show that Dgp > Sep if a +b < 0.
Assume now that a = b # 0. Sandor and Rasa [17] have proven that
Doo < Spq for a > 0 with the inequality reversed if a < 0. This
completes the proof. ¢

3. Inequalities

Proofs of some results in this section utilize a refinement of the
classical inequality which is due to Hermite and Hadamard.
Let f : [a,b] — R be a convex function. Then
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sy () <5t [ r0as @+ io)

with the inequalities reversed if f is concave on [a,b]. Equalities hold
in (3.1) if and only if f is a polynomial of degree one or less (see, e.g.,
[11]).

To obtain a refinement of (3.1) we introduce a uniform partition
of [a,b] with the breakpoints oy, i.e., a = ap < o1 <--- < a, = b with
o — -1 =h > 0. Also, let 81 < B2 < --- < B, be the midpoints of
the consecutive subintervals. Thus

(n—k)a+ kb

ap=~—"——— (0<k<n)
n
and
—2k+1 2k —1)b
m=f”‘ +;Z+(k ) (1<k<n).
Let n be a positive integer. We define
1 n
== f(B)
k=1
and

T, == {%mw NG f(ak)} .
k=1

Lemma 3.1. Let f be a convez function on [a,b]. Then

< /f Bdt < T,
b—a

Inequalities (3.2) are reversed if f is concave on [a,b].
Proof. Applying (3.1) to each of the integrals

L e
- F()dt
h Qg1
(h = (b — a)/n) and next summing the resulting expression, for k =
=1,2,...,n, we obtain the assertion. ¢

It is easy to verify that if f is a convex function on [a, b], then

Man{ Zﬂk:| = (‘Hb)

(3.2)

and
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n—1
1 1 1
T, < =[f(@) + FB] + = Y ln = B (@) + KFG)) = 51F(@) + SO
k=1
Thus (3.2) gives the refinement of the Hermite-Hadamard inequality
(3.1). |
Inequality (3.2), when n = 2, appears in [3]. See also [2].
We shall use Lemma 3.1 in the proof of the following.
Theorem 3.2. Let a and b (a # b) be nonnegative numbers. Then

n—1 1/n n 1/n
(3'3) (V IaIb H Iak) < Da,b < (H Iﬂk> 3
k=1

k=1
n 1 1 (1 1
(3.4) < <—|—+=+2 -— |,
i‘[ﬁk Doy ~2n \ 1, I kzleak
k=1
and

n—1 2/n 2/n
(3.5) (\/IZGIsz12ak> < DapSap < (Hfzﬂk> :

k=1

Inequalities (3.3) and (3.5) are reversed if a <0 and b <0 (a#b).
Proof. Assume that ¢ > 0 and b > 0, a # b. For the proof of (3.3) we
use Lemma 3.1 with f(¢) = InI; and property (P9) to obtain

1 n—1 1 b 1 n
= <1n\/IaIb+ZlnIak> < b“a/ InT,dt < EZmlﬂ,ﬁ.
k=1 o k=1

Application of (P10) to the middle term gives the assertion. In order
to establish inequality (3.4) we use inequality (3.3) to obtain

n 1/n 1/2n n—1 1/n
H(—l—> <! S(_l_) H(J_) _
AT, Day ~\LL) U\Z,

Application of the geometric mean-harmonic mean inequality together
with the use of the arithmetic mean-geometric mean inequality com-
pletes the proof of (3.4). Inequality (3.5) follows from (3.3). Replacing
a by 2a and b by 2b and next using the duplication formula DgpSap =
= D2, ,;, (see (P7)) we obtain the desired result. Casea<0and b<0
is treated in an analogous manner, hence it is not included here. ¢
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Inequalities (3.3) and (3.4) are valid for the Gini means with the
identric means being replaced by J-means of the appropriate order.

Bounds on the product D, S, are obtained below.
Theorem 3.3. Let a,b € R. Assume that a+b > 0. Then

2
(3.6) DupSap < Ay

if and only if ¢ = max(ry,r2), where r{ = %(a +b) and
(In4)l(a,b) ifa>0andb>0,
Tz:{o ifa<0orb<0.
If a +b < 0, then the inequality (3.6) is reversed if and only if ¢ =
= min(ry,72), where r1 is the same as above and
—(In4)l(—a,—b) ifa<0andb<0,
T"":{o ifa>0orb>0.

Proof. We shall use again the duplication formula /Dg 54,5 = Daqg 26
Assume that ¢ > 0 and b > 0. Using Th. A we see that Daq 25 < Dag g
if and only if 2(a + b) < 3¢ and [(2a,2b) < [(2g,q). Solving these
inequalities for ¢ we obtain ¢ > 1 and ¢ > r5. Assume now that a > 0,
b < 0 with a + b > 0. Invoking Th. A again we obtain ¢ > 7; and
k(2a,2b) < k(2q,q). The last inequality can be written as (a +b)/(a —
—b) < 1. Clearly it is satisfied for all values of @ and b in the stated
domain because 0 < a+b < a—0b. Case when a < 0, b > 0 with
a-+b > 0 is treated in the same way. We omit the proof of theorem
when a + b < 0 because it goes along the lines introduced above. ¢
Numerous inequalities for the particular means are contained in
those of Ths. 3.2 and 3.3.
Corollary 3.4. We have

(37) A2/3 < \/IS/GI'?'/G <1,
(38) \/AL< \111/213/2<I,

(3.9) VAL < Ag/g,
(3.10) VIJ < A a.

Proof. First inequalities in (3.7-3-8) follow from the second inequal-
ities in (3.3) and (3.5) by letting n = 2 and putting (a,b) = (3, %)
and (a,b) = (1,0), respectively while the second inequalities are an ob-
vious consequence of the logarithmic concavity of the identric mean.
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Inequalities (3.9-3.10) follow from (3.6) by letting (a,b) = (1,0) and
(a,b) = (1,1), respectively. ¢

Combining (3.7) and (3.9) we obtain VAL < Ay/3 < I (see [15]).
The second inequality in the last result is also established in [21].

The following result

(3.11) Afuys S Iada < Afpgyey 020

is also worth mentioning. Inequalities (3.11) are reversed if a < 0. Let
a > 0. Then the second inequality in (3.11) follows immediately from
(3.6). For the proof of the first inequality in (3.11) we use (3.7) and the
duplication formula (P7) to obtain

A} 5(3,y) = Ayys(z®,y%) < I(2%,y%) = I(z,y)J (z,y).

This completes the proof when a = 1. A standard argument is now
used to complete the proof when a > 0. §

Our next result reads as follows.
Theorem 3.5. Leta <0 and b<0. Then

(3.12) Doy < L(I,, Iy).
Ifa>0 and b > 0, then

1,1
. Dyp 2 ———r~.
(3.13) b= T, 1o)

Proof. There is nothing to prove when a = b. Assume that a < 0,

b <0, a#b. For the proof of (3.12) we use (P10), Jensen’s inequality
for integrals, logarithmic convexity of I; and the formula

1
L(a:,y)z/ oyt tdt
0

(see [7]) to obtain
1 b 1
In Da,,b = ““‘—/ In Itdt = / In Ita—{—(l—t)bdt S
b—a a 0

1 1
<In ( / Ita+(1_t)bdt> <1In ( / I;;Ig—tdt) =W L(I,, Ib).
0 0

Let now a > 0 and b > 0. For the proof of (3.13) we use (P5) and (3.12)
to obtain
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Ty Ty Ty
D, b($7 y) = > = =
’ D_, _p(x, L(I_,,1_ Ty =
a,~b(Z, ) ( b)) I, (TH, ﬁ)
B 1 I o
L(g4) Ll
Corollary 3.6. The following inequality
I1G

3.14 L

(3:.14) I,Q) ©

1s valid.

Proof. In (3.13) put (a,b) = (1,0). ¢

Inequalities similar to those in (3.12)—(3.13) hold true for the Gini
means. We have

Sa,,b SL(JG.)Jb) (CLSO, bSO)
and
Jan

a,b > L(Ja,Jb)
Theorem 3.7. Let a,b,c€ R (c#0). Then

(3.15) [Da,(2°,y°)]Y° > Dap(z,y)

if and only if (a +b)(c—1) > 0. A similar result is valid for the Gini
means.
Proof. We shall use (P4) in the form

(316) [Da,b(wca yc)]l/c = Dac,bc(ma y)

It follows from Th. A that Dy < Dgcpc if and only if a + b < ¢(a + b)
and if one of the remaining three inequalities of the above mentioned
theorem is valid. Assume that a + b > 0 and consider the case when
c>1 Ifa>0andb > 0, then min(a,b,ac,bc) > 0 and Il{ac,bc) =
cl(a,b) > l(a,b). Making use of (3.16) we obtain the desired inequality
(3.15). Now let a > 0, b < 0 with a+b > 0. Then min(a, b, ac,bc) < 0 <
< max(a, b, ac, bc) and k(ac,bc) = k(a,b) which completes the proof of
(3.15) in the case under discussion. Cases 0 < ¢ < 1 and ¢ < 0 are
treated in a similar way, hence they are not discussed here in detail.
For the proof of the counterpart of (3.15) for the Gini means one uses
the comparison inequality of Th. B. ¢

We close this section with the result which can be regarded as the
Chebyshev type inequality for the Stolarsky and Gini means.

S (a >0, b>0).
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Theorem 3.8. Let p = (p1,p2) and g = (q1,¢2) be positive vectors.
Assume that 0 < p;1 < ps and 0 < g1 < g2 or that 0 < py < p1 and
0 < qy < q1. Let s = (s1,52), where s1 = p1q1 and 83 = paga. If
a+b>0, then

(317) Da,b(p)Da,b(Q) S Da,b(s)'

If a +b < 0, then the inequality (3.17) is reversed. A similar result is
valid for the Gini means.
Proof. The following function

(3.18) W(t) = In1,(s) — [l (p)L(g)] (t € R)

plays an important role in the proof of (3.17). We shall prove that
¥(—t) = —1(¢t) and also that 9 (t) > 0 for ¢ > 0. We have

P(t) +P(-t) =

=Inly(s) + InI_;(s) — InLy(p) + InI_+(p)] — [InI:(q) + InI_;(q)] =

=2[InG(s) —InG(p) —InG(q)] = 0.
Here we have used the identity InI; +InI_; = 2In G which is a special
case of (P5) when a = b = ¢. Nonnegativity of the function (t) (t > 0)
can be established as follows. Let 0 < u < 1 and let v = (u,1 — u).
The dot product of v and p, denoted by v - p, is defined in the usual

way v-p = upy + (1 — u)ps. Using the integral representation for the
identric mean of order one

InI(p) = /0 In(v - p)du

we obtain
1

WZ()I(0)) = | 1al(v-p)(v- @ldu.
Application of the Chebyshev inequality

(v-p(v-g)<v-s
gives

In[I(p)I(q)] < /0 In(v - §)du =InI(s).

This implies the inequality I;(p)I:(q) < I;(s) (t > 0) with the inequality
reversed if ¢ < 0. This completes the proof of (3.17) when a = b =1
and shows that ¥(t) > 0 for ¢ > 0. Assume now that a # b. Let a +
+b > 0. Using (P10) together with the two properties of the function
1) we obtain
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1
b—a

b
In[Dy,5(p)Dap(q)] = / In[I;(p)I(q)]dt <

b
Sb a/ In Ii(s)dt = In Dy (s).

If a+b < 0, then the last inequality is reversed. Proof of the corre-
sponding inequality for the Gini means goes along the lines introduced
above. We omit further details. ¢

4. Ky Fan type inequalities

The goal of this section is to obtain the Ky Fan type inequalities
for the means discussed in this paper.

To this end we will assume that 0 < z, y < —% with z # y. We
define ' =1 —z, ¥’ = 1 —y and write G’ for the geometric mean of z’
and ¥/, i.e., @ = G(z',y"). The same convention will be used for the
remaining means which appear in this section.

We need the following.

Lemma 4.1. Let a # 0. Then

xa_ya,
$a+ya

A-2)*-(1-y)"

) (o)t (- v)e|

Proof. For the proof of (4.1) we define a function

-1
ofl) = t>0).
balt) = oy E>0)
Clearly ¢, is an odd function in a, i.e., ¢_, = —¢,. In what follows

we will assume that a > 0. Also, ¢,(t) > 0 for ¢t > 1 and ¢,(t) < 0 for
0 < t < 1. Since both sides of the inequality (4.1) are symmetric, we
may assume, without a loss of generality, that z > y > 0. Let z = z/y
and w = (1 —z)/(1 — y). It is easy to verify that z > 1 > w > 0 and
zw > 1. In order to prove (4.1) it suffices to show that |¢4(2)] > |da(w)]
for a > 0. Using the inequalities which connect z and w we obtain
2 —w*>0 and (zw)®>1.

Hence

2* —w+ (zw)* — 1> 2% —w® — (zw)® + 1
or what is the same that (2% — 1)(1 + w®) > (2* + 1)(1 — w®). This
implies that ¢,(2) > —¢ds(w) > 0. The proof is complete. O
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Proposition 4.2. Let a > 0. Then

G I, A, J,
(4.2) aSI—,SZTSj,*-
Inequalities (4.2) are reversed if a < 0 and they become equalities if and
only if a = 0.
Proof. There is nothing to prove when a = 0. Assume that a # 0. We
need the following series expansions

B 00 1 T —y 2k
(4.3) A= Gexp {Zg}g(aﬁ—y) },
k=1
o0 1 T —y 2k
(4.4) I =Gexp I;Zk—i—l(x—i—y) },
(4.5) J = Gex i L (z=y)”
‘ TP Lk T Ty
(see [18], [19], [16]). It follows from (4.3)—(4.5) that for any a # 0
11 z® — y® 2k
. Ag = Sy ,
(4.6) G exp [akz_:l% <$a+ya) }
'1 oo 1 2% — y° 2k
(4.7) I, =Gexp E;2k+1 (ma+ya> )
B _1 oo 1 20 — yo 2k
(4.8) Jo = Gexp a};%_l (ma+ya)

Eliminating G between equations (4.6) and (4.7) and next between (4.6)
and (4.8), we obtain

[o%}) 2k
1 1 z® —y®
(4.9) To = Aaexp {"E kzzl 2k(2k + 1) (w“ n y“) ]

and
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1 0 1 ma_ya 2k
(4.10) Jo = Ag exp {Ekzﬂ%(%_l) (a:“—{—y“) } :

Assume that a > 0. For the proof of the first inequality in (4.2) we use
(4.7) to obtain

I, G I 1 ok 2k
(4.11) 77 = o OXP LZ%_*_l(u »?*) |,

where

a a a a
o T g L, Bme)t -yt

7ty (= o)+ (1—y)°
Making use of Lemma 4.1 we obtain u?* — v2* > 0 for k = 1,2,... .
This in conjunction with (4.11) gives the desired result. Second and
third inequalities in (4.2) can be established in an analogous manner
using (4.9) and (4.10), respectively. The case a < 0 is treated in the
same way.

The main result of this section reads as follows.

Theorem 4.3. Leta,beR. Ifa+b> 0, then

E < Da,b Sa,,b
G T Dpy T Sap

(4.12)

Inequalities (4.12) are reversed if a + b < 0 and they become equalities
if and only if a+ b= 0.
Proof. There is nothing to prove when a +b = 0. Assume that a +b >
> 0. For the proof of the first inequality in (4.12) we use (P5) twice
with a = b =t to obtain

I, I_ G
(4.13) lnTZ,—‘rlnI,—_z:Zlna.
Let us define h(t) = In & — 1n§—z. It follows from (4.13) that A(t) =
= —h(—t). Also h(t) > 0 for t > 0 and h(t) < 0 for ¢ < 0. This is an
immediate consequence of the first inequality in (4.2). Making use of
(P10) we obtain

1 b G Das
> =1n—=— — AN
0 b—a/a h(t)dt = In o In D,

For the proof of the second inequality in (4.12) we define now h(t) as
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It follows that A(t) = (Inly —InJ;) — (InI] — In J}). Since both terms
on the right side are odd functions in ¢ (see proof of Th. C) it follows
that function h(t) is also odd as a function of variable ¢. Using (4.2) we
see that h(t) < 0 for ¢ > 0 with the inequality reversed if £ > 0. This
in conjunction with (P10) gives
D 1 Sab
——~ —1In

1 b
0> / h(t)dt = In e
a a,b a,b

“b-a
This completes the proof in the case when a+b > 0. Case when a+b < 0
is treated in an analogous manner. ¢
Corollary 4.4. The following inequalities are valid
H G L A
Sl i Qi Qi
H — G — L' = A

Proof. To obtain the inequalities in question we use Th. 4.3 twice
letting (a,b) = (—1,0) and (a,b) = (1,0). ¢
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