
The TAMU Security Package: An Ongoing Response
to Internet Intruders in an Academic Environment

David R. Safford, Douglas Lee Schales, and David K. Hess
Computing and Information Services - Network Group

Texas A&M University
College Station, TX 77843-3142

(This is an (almost) updated version of a paper that first appeared in
Proceedings of the Fourth USENIX Security Symposium)

1. Abstract

Texas A&M University (TAMU) UNIX computers came under coordinated attack in August 1992 from an
organized group of internet crackers. This package of security tools represents the results of over seven
months of development and testing of the software currently being used to protect the estimated 15,000 net-
worked devices at TAMU (of which roughly 9,000 are IP devices). This package includes three related sets
of tools: “drawbridge,” a powerful bridging filter package; “tiger,” a set of easy to use yet thorough machine
checking programs; and “netlog,” a set of intrusion detection network monitoring programs.

2. Introduction

A Brief History of the Incidents

On Tuesday, 25 August 1992, the Texas A&M University Supercomputer Center (TAMUSC) was notified
by the Ohio Supercomputer Center that a specific Texas A&M University (TAMU) machine was being used
to attack one of their computers over the internet. The local machine turned out to be a Sun workstation in
a faculty member's office. Unfortunately, this faculty member was out of town for a week, so rather than
trying to gain access to the machine through the department head, it was decided to monitor network con-
nections to the workstation and, if necessary, disconnect the machine from the net electronically. This deci-
sion to monitor the machine's sessions rather than immediately securing it turned out to be very fortunate,
as this monitoring provided a wealth of information about the intruders and their methods.

The initial monitoring tools were very simple, but as the significance of what was occurring became appar-
ent, the tools were rapidly improved to the point that the intruder's entire session could be watched in real
time, keystroke by keystroke. This monitoring led to the discovery that several outside intruders were
involved and that many other local machines had been compromised. One local machine had even been set
up as a cracker bulletin board machine, which the crackers would use to contact each other and discuss tech-
niques and progress!

By Thursday, 27 August, there was enough information about which machines had been compromised and
how they had been broken into to allow an effective cleanup. In addition, the severity of the modifications
the intruders were making, particularly on the bulletin board machine, made it imperative to stop the intru-
sions. The respective system managers, therefore, were contacted, arrangements made to shut down all
machines, and a system cleanup scheduled for the next day.

On Friday, 28 August, the known affected machines were worked on, closing the security holes that had
been used to break in, and all were brought back up on the network.

On Saturday, 29 August, an emergency call was received from one of the system managers, saying that the
intruders had broken back into the cracker bulletin board machine. Concerned about the integrity of their
research data, they asked for their machines to be physically disconnected from the rest of the network.

Portions of this work are Copyright 1993 USENIX Association. Reprinted with permission from Proceedings of the Fourth USENIX Security Symposium.

On Monday, 31 August, the logs of the new break-in were analyzed and it was determined that the crackers
were much more sophisticated than originally believed and that many more local machines and user
accounts had been compromised than initially realized. Several files were found containing hundreds of cap-
tured passwords, including ones on major (supposedly secure) servers. It appeared that there were actually
two levels of crackers. The high level were the more sophisticated with a thorough knowledge of the tech-
nology; the low level were the “foot soldiers” who merely used the supplied cracking programs with little
understanding of how they worked. Our initial response had been based on watching the latter, less capable
crackers and was insufficient to handle the more sophisticated ones.

After much deliberation, it was decided that the only way to protect the computers on campus was to block
certain key incoming network protocols, re-enabling them to local machines on a case by case basis, as each
machine had been cleaned up and secured. The rationale was that if the crackers had access to even one
unsecure local machine, it could be used as a base for further attacks, so it had to be assumed that all
machines had been compromised, unless proven otherwise.

The recommendation to filter incoming traffic was presented to the Associate Provost for Computing on
Monday afternoon and approved. The necessary equipment for the filter and monitor machines was bought
or borrowed late that afternoon, and the design and coding of the filter proceeded through the night. Partic-
ular effort was made in the design to achieve the necessary security with the minimum of impact to local
users. The filter was completed and installed by 5 PM Tuesday, 1 September.

At this point, the major task of analyzing all of the detailed logs and captured files was restarted. It was dis-
covered that over 40MB of the cracker’s tools had been captured, tools that they had FTP’ed onto some of
the broken machines. These tools included Crack, network monitoring tools, all SunOS, Ultrix and Dynix
source code (so they could replace any executable on the system), and cracking programs for virtually every
CERT announced vulnerability. The logs showed that the crackers routinely placed back door and trojan
login binaries on each broken system and used programs to set the timestamp and checksum of the replaced
binaries to avoid detection.

On Thursday, 3 September, TAMUSC monitor logs showed an obviously automated attack by ftp that was
sequentially probing every machine on campus. Here again it was decided to monitor this attack, as it was
not clear what it could accomplish. This decision to observe, rather than immediately block, turned out to
be very fortunate.

Shortly after midnight on Friday, 4 September, TAMUSC received a report from another site via the Com-
puting Emergency Response Team (CERT) at Carnegie Mellon that the crackers had broken back into
TAMU machines. The logs were immediately analyzed, and it was determined that the crackers had used
ftp to install a program that allowed them to tunnel past the TAMU filter's blocks. In addition, even though
they knew we were aware of their original intrusions, they continued their pattern of breaking in and replac-
ing key system binaries.

At this point, the filter was completely redesigned to keep the crackers out, and the new version was installed
by 5 AM Saturday. The new version changed the filter approach from “deny” based filtering (let everything
in unless it is specifically denied) to “allow” based filtering (block everything unless it is specifically
allowed). This new version, while providing much greater security, was unfortunately also more visible to
valid users.

Since the new filter was installed, no successful intrusion attacks against TAMU machines have been
observed, despite continued logging of probes and continued attempts. Recent efforts have centered in three
areas: improving the ease of use and throughput of the filter, reducing the manpower requirements of the
monitoring tools, and developing a program to help local system managers check their machines for proper
security configuration.

Highlights of the Cracker Sessions

While all techniques used by the crackers aren’t specified, the following section shows some of the more
interesting things that were discovered. In all cases, references to specific machines have been changed; all
of the spelling errors have been left in. The first fact is that the crackers seemed to have a compulsion to
discuss their exploits with other crackers. While IRC seemed to be the preferred technique, many of the
better crackers preferred less obvious methods, such as simply cat’ing directly to each other’s ttys.

This snippet records an unnamed cracker on host1 talking with NMN (No Means No) concerning having
run “ch”, a brute force password cracking program on all 10 HP Snake machines in a Kent State lab. This
conversation occurred on host1.tamu.edu using “cat >/dev/tty…”.

NMN: “Well the people who run all 10 of the HP's will core when all thier logs show NMN.and
especially if they find password crackers on them all.. me writing it is one thing ,but
installing it is ANOTHER”

host1: “How would they find NMN on the hp.You lost me.”

NMN: “Theyd see me Ftp to acct nmn on host2”

host1: “Possibly.Not liekly ..Unless they suspect something.Kent is the least concerened about
security of any host i a have a ever been on.Oh maybe bsides .ai.mit.edu systems.”

NMN: “Yeah ok”

host1: “Anyways.. dont forget to check up on the ch im running at host3.. its PID 16684 (ps -p
16684 will see if its still there) At host3, it should take 12.59712 days. *grin* BUT it
sould crack it.. its running right now, it could crack it tonight, could crack it next week,
who knows.”

One extreme form of communication involved one cracker setting up a clandestine conversation bulletin
board called LIMX (Local Immediate Message eXchange) on host4.tamu.edu, a machine that they had bro-
ken. LIMX was implemented as a passwordless back-door login by replacing the login executable. Here is
the logout message from LIMX:

“Connect to us again sometime, dont forget to spread the word about our system
(host4.tamu.edu/128.194.xx.xx) and the account name (limx) to all your friends. If you
dont have any friends, thats ok, tell your family members! Imagine the fun at the dinner
table if Mom, Dad, sister and brother (and of course your dog fido) all had computer termi-
nals and were connected online to the BACKDOOR LIMX, all chatting about the latest
gossip, sports reports, fashon tips, and the shocking crimes being committed (which of
course aren't related to our wonderful hypocrisy 'democracy'), and of course the wonderful
meal moms been slaving all day over a hot kitchen microwave making, which none of you
can comprehend. So spread the word! And connect to us again! Anonymous Cyberpunk
Number One Oh yeah, and thanks to NoMeansNo for making this wonderful program! Sure
beats IRC!”

3. Package Overview

Response Overview

Response to the intrusion incidents has three major thrusts: filtering, monitoring, and cleaning. The first line
of defense is the bridging filter package drawbridge, which is used to filter all packets to or from the internet.
Drawbridge allows internet access to be controlled on a machine by machine and port by port basis. Using
the filtering built into the TAMU WAN router (cisco) was initially considered, but it was determined that
our requirements, particularly in the need for supporting potentially different filtering to each of the roughly

9,000 IP machines in the TAMU networks, were too complex for the router. In addition, something was
needed that could handle high (T3) bandwidth, was itself very secure, and could be implemented rapidly.
While other firewall configurations are known to be stronger, drawbridge provides a compromise between
security and availability more acceptable to the university environment and provides much needed flexibil-
ity and throughput for the TAMU large scale network.

Realizing that drawbridge was a compromise between convenience and security, a set of monitoring tools
was developed to look for intrusions that might be attempting to circumvent the filter. These tools continu-
ously monitor the internet link, checking for unusual connections, patterns of connections, and for a wide
range of specific intrusion signatures.

The third major thrust has been the development of the tiger scripts, an automated tool for checking a given
machine for signs of intrusion and for network security related configuration items.

Figure 1 shows an overview of the filter and monitor implementation. (Note that in an FDDI configuration,
another router would be required between drawbridge and the internal network due to the difficulties with
bridging on FDDI.) In traditional secure gateways, a filter and secure bastion host are used and all traffic to
or from internet is forced through them. This typically means that users need proxy clients for external
access, such as for telnet and ftp, so that they all do not have to log on to the bastion host for external access.
At TAMU, the filter allows arbitrary protocol filtering on a host by host basis, so that each department can
set up its own authorized hosts with their own service configurations (subject to the campus wide minimum
standards). This provides a reasonable level of both security and flexibility for educational and research
requirements. For a UNIX host to be enabled at all beyond the default incoming permissions for mail, it
must pass the tiger scripts, as described later. The monitor node is placed outside the filter so that it can
record connection attempts which are blocked by the filter. This placement has been crucial to recognizing
intrusion attacks, but does place the monitor itself at risk. To minimize this risk, both the filter and monitor
are placed in a controlled access machine room and the monitor is configured for secure network access.
The filter is similarly programmed only to respond to secure filter update requests, which are not routeable.

Filter (drawbridge)

Chapman [1] presented an interesting analysis of the limitations of current filter implementations at the
Third UNIX Security Symposium. The drawbridge program, along with its support filter specification lan-
guage and compiler, address some of his critical recommendations with respect to both functionality and

… …secured hosts

drawbridge

netlog

to Internet

WAN Router

Secure Monitor

Bridging Filter

Figure 1. Overview of Components.

tiger

ease of specification.

The first approach chosen was based on an IBM PC compatible with two SMC 8013 (AKA Western Digital)
ethernet boards running software based on our modifications to PCbridge by Vance Morrison. This initial
version was soon completely rewritten in C to make the addition of needed features easier. The current filter
design provides “allow” based filtering per host with separate incoming and outgoing permissions. Also, in
the latest release (version 2.0) drawbridge supports FDDI filtering in addition to Ethernet filtering.

For both performance and configuration management, the filter tables are created on a support workstation,
based on a powerful filter configuration language, and then securely transferred to the filter machine, either
at boot time or dynamically during operation. The support machine does all the hard work of parsing the
configuration file, looking up addresses, and building the tables, so that the filter itself need only perform
simple O(1) table lookups at run time. Updating the tables dynamically via the network is made secure with
Pseudo One Time Pad encryption and authentication.

The current default configuration allows any outgoing connection, but basically allows in only smtp (mail).
Several campus and departmental servers have been checked and set up as hosts that are able to receive
incoming telnet, ftp, nntp, and gopher requests.

Monitor

The goal of monitoring is to record security related network events by which intrusion attempts can be
detected and tracked, particularly in those services allowed through the filter. This is a very difficult problem
in general. The communication data rates make this problem somewhat like trying to take a sip of water
from a fire hose; TAMU has some 30 terabytes of internal data transfer per day, and its internet connection
is on the order of 4 gigabytes per day, with an average of 100,000 individual connections during that period.
Clearly, monitoring needs to be both very selective and flexible, and automated tools are needed for review-
ing even these resultant logs. Another problem is that of monitor placement. It is important that monitors be
placed so that critical segments can be observed and so that the monitors themselves are secure.

Our solution includes the programs tcplogger, udplogger, netwatch, nstat, and some associated support pro-
grams. The tcp and udp loggers basically log a one line summary for all connection attempts. The associated
analysis programs report on suspicious connections or patterns of connections. In addition, these logs have
been very useful in analyzing details of security events after the fact. The netwatch program goes much fur-
ther, actually scanning all packets and their contents, looking for a specific set of intrusion signatures, such
as root login attempts from off campus. The nstat program collects statistics on all traffic to the filter and is
useful both for capacity planning and for detecting unusual activity patterns. Nstat detected a clandestine
FSP server on campus that was providing a repository of pirated commercial software, simply by noting a
large transfer rate on a specific UDP port.

Machine Cleanup (the tiger scripts)

The phrase ‘Tiger Scripts' comes from the concept of a ‘tiger team.' A tiger team is a group which locates
problems in a security system and demonstrates this problem by using it to circumvent the security system.
By doing this, it is hoped that any weakness will located and corrected. The ‘Tiger Scripts' perform the first
part of this task in the UNIX environment. They search through a UNIX system and report any elements
of it which may represent a security risk.

After a series of intrusions were discovered at Texas A&M University, it became apparent that a large and
unknown number of machines attached to the campus network had been compromised. A filtering bridge
was installed between the campus network and the Internet in order to protect the machines at the campus.
It was still necessary though to clean up the machines that were involved. Most (if not all) of these machines
were UNIX systems, but there were only a few people available at the university with the knowledge to
locate and correct the problems on these machines. The ‘Tiger Scripts' were developed to search out and

report these types of problems. The scripts are also used as a means of verifying the security of machines
to which access is allowed through the filtering bridge. Because of continuing development, the scripts have
grown beyond just this internal use.

There were several goals for the ‘Tiger Scripts.'

 • Ease of use
 • Robustness
 • Portability
 • Functionality

It was essential that the scripts be easy to use, as they were to be used by persons who possibly had little
UNIX systems management background. Towards this end, no user configuration of the scripts are
required. Once unpacked, all that is necessary is to run the script ‘tiger.' This generates a report which con-
tains any possible problems found. All messages are tagged with severity levels. These severity levels are
used to indicate whether the system would be cleared through the filtering bridge. At the university, the
manager of a system simply provides a copy of the report when requesting access.

It was also essential that these scripts be robust. Since they would be run on many different systems, the
scripts had to be written in order to handle the nuances of the many administrators. This is of most concern
when parsing system configuration files, as this is often where security problems manifest themselves.

In addition to these goals, portability had to be considered as well. The flavors of UNIX running on
machines at Texas A&M is diverse. The initial release of the scripts (October 1992) was targeted toward
machines running SunOS 4.1.x, as these machines were the primary target during the intrusion. The second
release (April 1993) incorporated support for SunOS 5.x and NeXTOS 3.0. Future releases will include
support for other UNIX derivatives such as AIX 3.x, HP-UX, IRIX, and UNICOS. The scripts are designed,
however, to perform a "best of their ability" attempt even when specific support is not provided for a system.
The only primary requirement is that the systems Bourne shell support the defining of shell functions.

The scripts accomplish these goals, while at the same time providing the following functionality. System
configuration files are checked for problems, system binaries are checked for alterations, or known security
problems, and known signs of an intrusion are checked. There is also support for the extension of the checks
as new problems are reported.

 For ease of use, the tiger scripts label all outputs with an error classification:

ALERT A positive sign of intrusion was detected.

FAIL The problem that was found was extremely serious.

WARN The problem that was found may be serious, but will require human inspection.

INFO A possible problem was found, or a change in configuration is being suggested.

ERROR A test was not able to be performed for some reason.

As an aid to ease of use, an explanation facility is provided with the tiger scripts. Explanations can be
requested for specific messages, or an explanation report can be generated for the security report. The expla-
nation report can automatically be inserted into the security report, with explanations following each of the
security messages. The explanations describe the situation, why it is a problem, and how to correct it. Figure
2 shows an excerpt from a security report with explanations inserted.

The checking performed covers a wide range of items, including items identified in CERT announcements
and items observed in the recent intrusions. The scripts use cryptographic checksum programs to check for
both modified system binaries (possible trap doors/ trojans), as well as for the presence of critical security
related patches.

At the present time, the tiger scripts have been configured for SunOS 4.1.x, SunOS 5.x, Nextstep 3.0, AIX

3.2, HP-UX, IRIX 4.0, and UNICOS 7.0 releases. The programs are largely table driven for ease of porting,
and ports to other platforms are being worked on.

Policies

The policies and procedures need to provide both security and flexibility. The resultant decision was to filter
incoming traffic other than mail to all machines and then allow case by case requests for authorized hosts
status, based on successful demonstration of basic security configuration with the tiger scripts. Special
requests for allowing incoming requests to special servers that are not easily checked, such as for embedded
robot controllers, have been made. In these cases, the connections have been allowed, but special monitors
have been implemented on these services.

Long term policy questions that remain unanswered include how to handle updates in response to critical
CERT announcements and how to handle OS updates. Obviously, some way to coordinate both periodic and
quick response host reviews is needed. This filter configuration language does support machine classes, so
it would be possible to do something such as “disable ftp to all SunOS 4.1.1 machines” in response to a
CERT announcement of a respective problem, but it would be nice to have a mechanism to communicate
such announcements to the respective managers before cutting off access. The problem on a large campus
is maintaining a contact list for a large number of machines, given the high rate of turnover in student man-
agers. In addition, the information in the filter configuration file may rapidly become outdated, as managers
update their machines’ hardware and software. The current plan is to require periodic (annual) security
checks with the current tiger scripts, enforced with the possible loss of IP authorization. In the case of ape-
riodic security events or announcements, an attempt will be made to evaluate the time criticality of respond-
ing and require appropriate event specific checking. As the tiger scripts are easy to run, it is anticipated that
this requirement will not be a significant burden to system managers.

A recent case in point was the announced security problem with the wuarchive anonymous ftp code. In this
case, it was known exactly which machines had ftp authorized, and the respective managers were contacted
immediately. The managers updated their software so rapidly that it was not necessary to block access, and
the limited number of authorized machines avoided the need for an immediate tiger update.

Figure 2. Sample tiger scripts security report with explanations inserted.

--WARN-- [acc012w] Login ID sundiag has uid == 0.

The listed login ID has a user ID of zero (0) and is not the 'root' account.
This should be checked to see if it is legitimate. In any case, having login
ID's with a user ID of zero tends to lead to security problems, and should be
avoided (except for 'root')

--WARN-- [acc004w] Login ID csehlhp is disabled, but has a .rhosts file

The listed login ID is disabled in some manner ('*' in passwd field, etc), but
a non-zero length .rhosts file. This can allow the login ID to continue to be
used. Unless this has been specifically set up to provide some service, it
should be removed.

 --INFO-- [acc002i] Login ID vu18368 is disabled, and has a shell of /bin/login.

The listed login ID is disabled, but has a potentially valid shell. These can
usually be safely ignored, but should be checked.

4. Filter (drawbridge)

Design

Drawbridge is different from any of the current standard firewall configurations. Using the categorization
of firewalls developed by Ranum [2], drawbridge compares best to a filtering router firewall configuration
as shown in figure 3. In a filtering router firewall, a router which has packet filtering support is used to filter
packets to and from hosts on the “inside” of the router. This is used to establish a policy where hosts are
provided more or less access depending on the decisions of the network managers.

In an university environment, access typically would be based on the department the machine is located in,
who manages/uses the machine, and an initial security audit, which is hopefully repeated on a regular basis.
At TAMU, security audits are performed using the tiger scripts package, which was developed for this pur-
pose. Any hosts that are never “registered” for access through the filter would receive some type of default
access that would be defined by the network managers.

While this type of firewall is theoretically weak in comparison to other firewall methods, in practical use it
does provide a useful increase in security. The points of attack have been greatly reduced and casual intrud-
ers are quickly discouraged.

A typical drawbridge firewall configuration is related to a filtering router firewall as shown in figure 4. The
difference is that instead of using a filtering router as the firewall, the filtering function is moved from the
router into drawbridge which acts as a bridging filter. Note, however, that figure 3 describes just a typical
setup; a router is not a necessary component of a drawbridge configuration.

Comparison to Other Filtering Methods

Chapman [1] is an excellent source of information about packet filtering issues. He discusses the concepts
behind packet filtering and some of the problems associated with it. He also discusses the problems with
current implementations of packet filtering found in some current routing products.

Some of these problems include:

• Complex configuration language
• Difficult verification
• Lack of filtering on key parameters, such as source port or direction

Filtering
Router

Internet Link

More Accessible
Host

Inaccessible
Hosts

Less Accessible
Hosts

Figure 3. Typical filtering router firewall.

Rather than repeat that material, it will be assumed that the reader is familiar with packet filtering
and a discussion of how drawbridge tries to address some of these problems mentioned by Chap-
man [1] will be presented.

One of the first problems with current packet filtering implementations is that they are difficult to
configure. They use a simple syntax that is designed for efficient implementation, not for effective
configuration by an administrator. On a university campus, there is a need for many different filter-
ing configurations to satisfy the diverse needs of the many users. Also, while the needs of adminis-
trators are usually defined in terms of connections, filters usually are defined in terms of packets
only; the semantics of connections must be tediously mapped on to them.

These issues are addressed in drawbridge through the use of compiled tables. One table is defined
for each (entire) IP network with each host address in that network being a single entry in the table.
This allows a powerful source language to be designed that administrators can easily use and that
is flexible enough to define complex sets of filters. In addition, drawbridge, under TCP, is not
restricted to filtering in terms of packets but also filters in terms of connections. This makes config-
uration easier for the administrator and drawbridge more efficient.

This table design allows arbitrarily complex filters to be defined with little penalty. In conventional
filtering routers, as filters are added, the performance begins to quickly drop due to how they imple-
ment the filtering rules. In drawbridge, arbitrary numbers of complex filters can be set up and the
performance remains almost constant since simple look ups are performed and only connection
establishment packets are filtered for TCP.

A second problem with most filtering implementations is that testing filter configurations is diffi-
cult. Drawbridge remedies this by allowing the administrator to check the results of a compiled
configuration file to see if the correct filtering rules have been applied. Since drawbridge is less
algorithmic than current filtering implementations, it is sufficient to investigate the compiler output.
The administrator can look at the class that a host has been assigned and at the filtering lists defined
for each subtable in that class.

A last problem that drawbridge addresses is the need for support for source port filtering. Draw-
bridge specifically defines an entire subtable to support TCP source port filtering (UDP source port
is not currently supported). Since source port filtering does allow the possibility of tunneling, draw-

Bridging
Filter

(drawbridge)

Internet Link

More Accessible
Host

Less Accessible
Host

Inaccessible
Host

Figure 4. Drawbridge firewall.

Router

bridge does add the restriction that the destination port must be greater than 900; 900 was chosen
due to certain FTP implementations that happen to use FTP data ports beginning at around TCP
port 900 rather than following the BSD convention of starting at 1,024.

Physical Structure

Drawbridge is physically structured as shown in figure 5. The PC running filter is placed between
the external network (Internet link) and the internal network (campus) that will be protected.
Optionally, a Sun workstation can be used to communicate with and manage filter on the PC. Filter
acts as a filtering bridge between the external and internal networks. Filter performs bridging but
does not conform to bridging standards, e.g., it has no support for Spanning Tree Protocol.

In the ideal configuration, the workstation would be placed outside of filter so that monitoring of
connection attempts from the external network can be performed. This is a good way to look for
attacks and probes that are attempted against your internal network (and are hopefully blocked by
filter). Since this also restricts the workstation's access to the internal network, a workstation will
have to be committed specifically for this purpose. If a spare workstation isn’t available, a machine
on the internal network can be used to perform the management.

As mentioned above, filter is a table based filtering bridge. This approach was taken to improve the
performance of filtering. The tables are generated by the following process (see figure 6). First, a
source file containing filtering specifications in a special language is generated and maintained by
an administrator. This file is then passed through fc, which generates the tables used by filter. These
tables can be loaded via fm or by floppy disk.

Filter Compiler Language

The language used by the compiler contains constructs for creating the various tables used by the
filter. Constructs exist for specifying the network access on a per host basis, on a network or on a
subnetwork basis. Groups of services can be created. These groups can be used in cases of related
services or to group related machines. Access to particular external sites can also be granted, and
access from certain sites can be denied. These constructs are shown in figure 7.

External Network

Figure 5. Ideal drawbridge Configuration.

Workstation

Internal NetworkPC

Figure 6. Drawbridge Compilation and Loading Process.

Filter Source File FilterFilter Compiler (fc) Filter Manager (fm)

Sneaker Net

Hosts and networks can be granted network access using service specifications or group names. As
hosts and networks are processed, the classes used by the filter are created. Hosts with equivalent
network access (real access, not syntactic) will belong to the same class.

A group is a list of comma separated service specifications or other previously defined groups.
Groups can be used to relate services or to categorize machines, allowing quick global changes to
a category of machines. The special group “default” specifies the default access for any machine
that does not match any of the networks loaded into filter.

Constructs also exist for building the allow and reject tables used by the filter. The allow table
allows internal machines access to a restricted external service. The reject table is used to block all
incoming packets from a host or network.

The basic element of the language is a service specification. The service specification contains four
pieces of information: the service, protocol, source or destination, and traffic direction. The service
can be either an entry from /etc/services or a numeric port. Service ranges can also be used. The
protocol specifies the protocol the service uses. The source or destination indicates whether the filter
should use the source port or the destination port. Finally, the traffic direction indicates whether this
is for outbound packets, inbound packets, or both. The grammar defining a service specification is
shown in figure 8.

An example configuration file is shown in figure 9.

Figure 7. Constructs contained in the filter compiler language.

host (<hostname>|<ip_address>) <list of service_entries>
network (<ip_address>|<ip_address> - <ip_address>) <netmask> <list of service_entries>
define <group_name> <list of service_entries>
allow <ip_address> <netmask> <list of service_entries>
reject <ip_address> <netmask>

Figure 8. Service entry grammar.

<service_entry> ::= < (src=|dst=) <service_desc> (in|out|inout) > |
 <! (src=|dst=) <service_desc> (in|out|inout) > |
 <group_name>
<service_desc> ::= <service> | <service_range>
<service> ::= <port_number> |
 <port_number> / <protocol> |
 <service_name> |
 <service_name> / <protocol>
<service_range> ::= <port_number> - <port_number> |
 <port_number> - <port_number> / <protocol>
<protocol> ::= <protocol_number> | <protocol_name>

How filter Works

fc generates four different kinds of tables (see figure 3):

• Multiple "network" tables, with one entry per host address,
• A "class" table with one permission list per distinct service class,
• A global "allow" table, and
• A global "reject" table.

 The network tables have an entry for each host in the network. The host portion of an address
(ignoring any subnetting) determines the index into the table. The value in the table defines the
“class” that will be applied to a host when a packet is to be filtered. Only class B and C networks
are currently supported. The tables are stored in XMS memory which allows as many networks to
be loaded as will fit into physical memory (a cache is kept in low memory).

Figure 9. Example configuration file.

Defaults for any machine not listed in this file.
define default <1-65535/udp in>, <!tftp/udp in>, <!sunrpc/udp in>,

 <!2049/udp in>, <1-65535 out>, <src=ftp-data in>,
 <smtp in>, <auth in>, <gopher in>;

Admin requested no access in/out for this subnet
network 123.45.58.0 255.255.255.0 <!1-65535 in-out>;

NNTP host and CSO phonebook server
host mailnews.tamu.edu default,
 <nntp in>, <time in>,
 <csnet-ns in>, <domain in>,
 <finger in>;

Machine (PC) in library which uses tftp to do document transfers
host sender.tamu.edu <1-65535/udp in>;

Has to have X
host arrow.tamu.edu default, <ftp in>, <6000 in>;

No TCP access in/out
host bee.tamu.edu <!1-65535 in-out>;

.

Note that the network and class tables are defined in terms of a host on the internal network. No
filtering is done based on the address of a host outside of the filter except on a global basis for reject
and allow. It is assumed that an inside host will control which outside hosts are allowed to access
its services, e.g., using TCPWrapper. Filter only controls which internal host's services are open,
not which external hosts may access an internal host's services.

The host's class is used as an index into the class table. This second table is composed of four sub-
tables: TCP in, TCP out, TCP source and UDP in. The subtables are composed of lists that contain
port number ranges. A class specifies a list out of each subtable that defines a host's filtering. It is
important to note that the TCP filtering only occurs when ACKless SYNs (connection initiation)
are detected in a TCP header. All other packets of a TCP session are not filtered. Also, all UDP
packets are filtered on an incoming basis only.

The last two tables are the allow and reject tables. The allow table globally allows packets out from
any machine on the inside of the filter to the list of addresses in the allow table using the supplied
list of port number ranges. The reject table globally rejects packets coming in from any machine on
the outside of the filter with an address corresponding to an address in the reject table.

0

K

Figure 10. The four tables generated by fc.

0

NX

Network X

Class

Begin End

Port Range List

TCP
in

TCP
out

TCP
source

UDP
in

Allow Reject

Address Mask Address Mask

....
....

....
....

....

....

....

....
....

....

..

..

TCP

0

NY

Network Y

....

....

....

..

..

..

..

..

..

..

..

..

out

Figures 11 and 12 are flowcharts describing how filter uses these tables to check connections for
incoming and outgoing requests, respectively.

Figure 11. Incoming Packet Filtering Algorithm.

Bridge packet?

yes

no

IP?

yes

no

Source IP address in reject list?
yes

no

TCP/UDP?

ACKless SYN?

TCP

Network table defined for Network table defined for
destination IP address? destination IP address?

no

UDP

Use class 0

no

Look up class
for host

yes

Use class 0 Look up class
for host

yes

no

Does class allow the
destination port in?

Does class allow the
source port in and is

destination port > 900?

DROP

Does class allow the
destination port in?

PASS

yes

yes

yes

no

yes

no

no

no

Implementation

Filter started out as a simple modification to PCbridge, a public domain program written in assem-
bly. It is now approximately 6,000 lines of C code. While version 1.0 was specifically coded to
SMC 8013 Ethernet boards, version 2.0 uses NDIS drivers and supports both Ethernet and FDDI
configurations. (Note that the FDDI configuration requires special considerations due to the prob-
lems with bridging on FDDI).

The initial hardware setup consisted of a 33 MHz 486 with two 16 bit SMC Ethernet cards on an 8
MHz ISA bus. While version 1.0 peaked at approximately 3.5 Mb/s, version 2.0 now peaks at 5.5
Mb/s (peaks of 18 Mb/s have been measured in an FDDI configuration). This speed up is primarily
due to the fact that NDIS drivers are interrupt driven. Note, however, that due to this fact the per-

Figure 12. Outgoing Packet Filtering Algorithm.

Bridge packet?

yes

no

IP?

yes

no

TCP?

yes

ACKless SYN?

Network table defined for
source IP address?

no

Use class 0 Look up class
for host

yes

Does class allow the
destination port out?

Destination IP address
in allow list?

DROP PASS

yes

yes

yes

no

no

no

no

Does allow list allow the
destination port out?

yes

no

formance "curves" can experience "knees" (forwarding rate drop offs) when the packet rates get
extremely high depending on how powerful your hardware is. This is due to the amount of overhead
in an NDIS driver servicing interrupts on the cards. Filter ends up with no CPU cycles left to trans-
fer packets.

While version Drawbridge 1.0 only used "real" memory and was limited in the number of tables
that could be loaded, 2.0 uses XMS memory so that all of physical memory is available. The net-
work tables are stored in XMS memory while a cache is kept in low memory.

5. Monitor

Service Initiation Logging

The first tool, which is actually two tools (tcplogger and udplogger), records the initiation of a TCP
session or UDP session. The start of a TCP session is indicated when the FLAGS field of the packet
has the SYN flag set with no other flags set. A record is written to a log file, ASCII or binary, for
each session. For a binary log file, the format of the record is:

struct sessinit {
struct timeval start_time; /* Initiation time */
unsigned long ip_src; /* IP source address */
unsigned long ip_dst; /* IP destination address */
unsigned long tcp_seq; /* TCP sequence number */
unsigned short srcport; /* Source port */
unsigned short dstport; /* Destination port */

};

The TCP sequence number is recorded so that duplicate packets can be removed in a post-process-
ing phase. This simplifies the recording tool.

Detecting the initiation of a UDP session is not as simple. The UDP logging system uses a heuristic
to determine the start of a session. Whenever a UDP packet is received, a table of “active” sessions
is searched. If the packet belongs to an active session, that session’s active time stamp is updated.
If no active session is found, then a new “active” session is created and the packet is logged, using
the same record structure as used by the TCP logging system. Since UDP packets do not have
sequence numbers, the sequence number field is set to zero. After a packet has not been received
for a session for an (user specifiable) amount of time, that session is deleted.

Both tools use the SunOS 4.1 Network Interface Tap (nit) with packet filters (nitpf). The use of the
packet filter significantly enhances the performance of these two tools.

Service Initiation Log Processing

The binary log files created by tcplogger and udplogger contain records of all the TCP and UDP
sessions that have occurred. This is, of course, a large number. On a normal day, there are over
100,000 TCP sessions and around 50,000 UDP sessions occurring on the TAMU Internet link. A
tool was developed for extracting only those records of interest. The tool, extract, uses an “awk”-
like language for selecting records and printing them. Records can be selected based on source or
destination port, host, and network, date, and time. Selectors can be grouped using the boolean
“and” and “or” operators. An example extract script is shown in figure 14. Extract can generate
ASCII or binary log files. The binary log file uses the same format as the TCP and UDP logging
tools, thus allowing further processing to occur. Since there is no information in the binary log file
to indicate whether it is a TCP or UDP entry, the two can not be mixed, and extract must be
informed of the type of file it is processing.

In practice this restriction is not a problem. There is generally a lot of noise with UDP traffic (trac-

eroutes, FSP, etc.). If mixed together with the TCP log data, a TCP connection might be lost in the
noise. Separating them into two log files eliminates this problem. As we normally maintain two
logs for this reason, tagging each record by type so that the logs can be combined, is not of signif-
icant benefit.

Protocol Signature Analysis

While the TCP/UDP logging tools allow us to detect when someone is probing the campus
machines for tftp, or some related activity, they don't tell us what happens when someone connects
to a system via telnet or some other TCP/IP service. The etherscan tool provides this capability.
Etherscan monitors certain protocols for unusual activities. These protocols are the ones normally
allowed through the filtering bridge, i.e., telnet, ftp, smtp. The specifics of what is watched for will
not be discussed here, as we do not want potential intruders to know exactly at what we are looking.
One example though is attempts to login using system account names, e.g., “root.” Another feature
of etherscan is the ability to detect and report FSP servers. FSP is a UDP based file transfer system
which has found favor among those wishing to keep their activities hidden from network and sys-
tem administrators. A sample listing of the output of etherscan is shown in figure 15. At TAMU,
there are approximately 20 records recorded per hour. Most of these are due to people attempting
to login as the user ‘guest' or ‘anonymous'.

As with tcplogger and udplogger, etherscan uses the SunOS 4.1 Network Interface Tap and the
packet filtering mechanism for performing packet captures.

Figure 13. Example extract script.

#!/usr/local/etc/extract -f
#
Print out interesting TCP events coming from the Internet
#
srcnet = 128.194.0.0 {next} # Skip sessions originating from A&M
dstport = shell ||
 dstport = exec ||
 dstport = 6000 {print; next}
srchost = terminus.lcs.mit.edu ||
 srchost = nyx.cs.du.edu {print; next}
dstport = smtp || dstport = telnet || dstport = finger ||
 dstport = 113 || dstport = ftp || srcport = ftp-data {next}
dstport = nntp && dsthost = news.tamu.edu {next} | |
dstport = 2000 && (
 dsthost = mud1.tamu.edu ||
 dsthost = mud2.tamu.edu) {next}
dstport > 1023 {next}
{print} # Print anything that makes it to here

Traffic Analyzer

The final tool, nstat, is used to locate changes in network traffic patterns. This tool was originally
written in order to gather statistics on the usage of various protocols on the Internet link. By record-
ing these levels on an hourly basis, changes in the usage of a protocol can indicate someone attempt-
ing to bypass system security. Using this, an unauthorized FSP server was discovered on the campus
when the UDP port that was being used suddenly increased in utilization (this was before support
had been added to etherscan for detecting FSP servers).

Nstat has a raw output in ASCII format, although it is not really intended for direct viewing. Two
programs, nsum and nload, are provided to analyze the raw nstat output. Nsum is a PERL program
that summarizes the utilizations statistics, giving an ASCII histogram of the top ten usages at the
ethernet, IP, TCP, and UPD levels. Nsum has support for analyzing certain time periods, such as
morning, afternoon, etc., and for selecting weekday versus weekend times. The second analysis
program, nload, is a simple awk program which produces data suitable for graphing with a tool such
as xvgr. A parameter file for xvgr is included. Figure 16 shows a section of the raw nstat output.
Figure 17 shows a histogram produced by nsum.

Ethics

Many may question the ethics and legality of such monitoring. We feel that our current system is
not a privacy intrusion. The TCPLOGGER and UDPLOGGER are simply the network equivalent
of process accounting, as they log routine network events, but none of the associated user level data
associated with the event. Etherscan similarly reports unusual network events, which is the network
equivalent of logging failed login attempts.

Figure 14. Example output from etherscan.

05/26/93 08:35:54.19 [smtp] some.host.edu.2992 HOSTAT.TAMU.EDU cmd help
05/26/93 08:36:00.08 [smtp] some.host.edu.2992 HOSTAT.TAMU.EDU cmd help data
05/26/93 08:36:04.19 [smtp] some.host.edu.2992 HOSTAT.TAMU.EDU cmd help mail
05/26/93 08:36:19.84 [smtp] some.host.edu.2992 HOSTAT.TAMU.EDU cmd help rcpt
05/27/93 11:16:49.44 [udp] AHOST.UDE.EDU.21 possible FSP server.
05/27/93 13:23:30.42 [ftp] 128.194.180.66.27935 out.there.edu attempted login
 ‘USER'
05/27/93 13:23:31.87 [ftp] 128.194.180.66.27935 out.there.edu 530 User USER
 access denied..
05/27/93 13:55:37.29 [telnet] 128.194.225.211.33633 over.there.edu attempted
 login as ‘system'

#Start Wed May 19 18:48:01 1993
#Stop Wed May 19 19:22:52 1993
#550641 packets, 78169154 bytes, 9178 802.3, 2 runt, 3320 missed.
e 600 # 175 b 15882
e 800 # 457927 b 67569221
e 806 # 235 b 14104
e 889 # 184 b 11452
i 1 # 819 b 63686
i 6 # 446119 b 66005034
i 9 # 87 b 104942
i 17 # 10642 b 1375485
t 20 # 40416 b 16027884
t 21 # 1263 b 96426
t 23 # 81314 b 6522485
t 25 # 18540 b 3092486
t 37 # 8 b 480
t 53 # 58 b 4104
t 70 # 11347 b 4266897
t 79 # 262 b 22230
t 113 # 26 b 1596
t 119 # 108098 b 16296687
u 42 # 6 b 360
u 53 # 6634 b 628649
u 111 # 4 b 536
u 123 # 3622 b 325980
u 125 # 67 b 7102
u 127 # 67 b 7102
u 161 # 156 b 13950
u 213 # 24 b 1776
u 513 # 92 b 9960
u 514 # 3 b 348
u 517 # 6 b 552
u 518 # 137 b 17142
u 520 # 4864 b 954544

Figure 15. Raw nstat output.

6. Machine Cleanup (the tiger scripts)

Structure

The tiger scripts consist of one primary “driver” script named tiger, a set of scripts which check
various components of the system, support scripts, and support files. The driver script, tiger, exe-
cutes each of the component scripts. Its usage is:

tiger [-B tigerhomedir] [-d loggingdir] [-w scratchworkdir]

The configuration file, tigerrc, can be used to enable or disable the different component checks. This
allows certain fast executing components to be executed frequently, while other, longer executing
components can be executed less frequently.

The driver and component scripts make use of many support scripts and data files. These are used
to make the scripts portable. The support scripts are used to set internal variables, such as the path-
names to the UNIX commands used by the scripts, and to convert system configuration files into
the formats the main scripts can parse. For example, one of these scripts is used to generate
‘/etc/passwd'-like input from the various locations that this information is obtained on a particular
system. They are also used to provide functionality that a particular system may be lacking. The
data files contain information that is compared against information found on the system. For exam-
ple, one of the files contains the permissions expected on system files and directories.

Component Scripts

The checks performed by the tiger scripts are broken out into several component scripts. Ordinarily,

Utilization: 68.44%

ETH IP (50%/57%):##
ETH DECIVDNA (3%/ 4%):###
ETH DECLAVC (3%/ 4%):###
ETH oldIPX (2%/ 3%):##
ETH DECLAT (1%/ 1%):#
ETH Banyan (0%/ 0%):
ETH DECRCONS (0%/ 0%):
ETH DECLBM (0%/ 0%):

IP TCP (56%/47%):##
IP UDP (3%/ 3%):###
IP ICMP (0%/ 0%):

TCP ftp-data (18%/14%):##################
TCP nntp (17%/13%):#################
TCP 2000 (7%/ 6%):#######
TCP telnet (5%/ 4%):#####
TCP 175 (3%/ 2%):###
TCP smtp (3%/ 2%):###
TCP 6667 (2%/ 1%):##
TCP 1023 (1%/ 1%):#

UDP route (17%/ 1%):#################
UDP domain (14%/ 1%):##############
UDP ntp (6%/ 0%):######
UDP 2074 (3%/ 0%):###
UDP 1081 (2%/ 0%):##
UDP 1025 (1%/ 0%):#

Figure 16. Example nsum output.

these are all executed by the driver script tiger, but they can all be executed directly.

Many of the scripts check the ownership and access permissions for files. There are two different
types of checks. They will be distinguished in this paper by referring to them in the following man-
ners.

A check of a pathname means that all components of the pathname are checked. If the support
module ‘realpath' is available (i.e., it compiled), any symbolic links are handled as well. As an
example, on SunOS 4.x systems, ‘/usr/spool' is a symbolic link to ‘/var/spool'. Therefore, the path-
name ‘/usr/spool/cron' contains the components ‘/usr', ‘/var', ‘/var/spool', and ‘/var/spool/cron'
which will be checked. All ‘‘incorrect'' ownerships or access permissions along the pathname are
reported in detail.

A check of a filename, directory or file means that only the ownership and access permissions of
the file referred to by the filename are checked.

The ownership and permissions requirements are user configurable. The default configuration
requires that pathnames to system executables and files be owned by root and writable only by root.

check_accounts

The ‘check_accounts' script examines user accounts for the following:

• passwordless accounts
• checks home directory ownership and access permissions
• checks ownership and access permissions of configuration files
• disabled account with .rhosts file, cron entries or .forward file that executes a program.

--WARN-- [acc004w] Login ID nag is disabled, but has a .rhosts file
--WARN-- [acc006w] Login ID dave's home directory has group
 ‘apcis' write access.

check_aliases

The ‘check_aliases' script examines the system mail aliases file. It reports any program aliases, and
also checks the pathnames to the executable for proper ownership and access permissions. It also
verifies that pathnames to any included files have proper ownership and access permissions (the
entries in the included files are also processed).

--INFO-- [ali005w] Alias ‘drawbridge-server' contains a program
 entry: |"/xpub/secure/mailserver"

check_anonftp

This script checks for an anonymous FTP setup, and if one is found checks the integrity of it. Own-
ership and permissions of critical files and directories are checked. It also reports on any writable
directories that are found.

--WARN-- [ftp010w] ~ftp/xpub/ftp/bin is writable by 'ftp'.

check_cron

The ‘check_cron' script checks user ‘cron' files. It examines the ownership and permissions of the
pathnames used by each cron entry. Executables without absolute pathnames are also reported. The
script attempts to be smart and interpret complex cron entries.

--FAIL-- [cron003] cron entry for root uses ‘/var/netlog/bin/logit'
which contains ‘/var/netlog' which is group ‘wheel' and
world writable.
/var/netlog/bin/logit stop

--WARN-- [cron002] cron entry for root uses ‘/home/accts/doug/
tiger-2.1.1/tigercron' which contains ‘/home/accts/doug/
shop' which is not owned by root (owned by doug).
/home/accts/doug/tiger-2.1.1/tigercron -B
/home/accts/doug/tiger-2.1.1 -l
/var/spool/tiger -w /var/spool/tiger/work -b
/var/spool/tiger/bin > /dev/null 2>&1

check_exports

This script checks the server side of an NFS machine. Filesystems exported with "root" access, are
reported, although the script does understand diskless clients and is (usually) quiet about these. It
also reports exporting of the root directory (/), unrestricted exports, etc.

--WARN-- [nfs011w] Unprotected directory /fs is exported with root
access to host(s) HOSTX.TAMU.EDU.

--WARN-- [nfs011w] Unprotected directory /export/export1/sunos5 is
exported with root access to host(s) thea, and
poshost.

--INFO-- [nfs010i] Directory /export/export1/root/Xkernel.sun3x is
exported with root access to host(s) xhost.

check_group

The ‘check_group' script cross references all of the sources of 'group' information for consistency.
Any conflicting group ids or group names are reported. The group files are also checked for correct
format.

--WARN-- [grp004w] GID conflict for group ‘system' between
/etc/passwd (gid = 2) and NIS (gid = 128).

--WARN-- [grp005w] Groupname conflict for gid 8 between
/etc/passwd (group staff) and NIS (group grads).

check_inetd

The ‘check_inetd' script examines the configuration files ‘/etc/inetd.conf' and ‘/etc/services.' It
looks for things such as mismatched entries (i.e., telnetd on a port other than 23). It also reports any
services which have been added from the standard distribution. The pathnames of executables are
checked for ownership and access permissions.

--WARN-- [inet005w] Service login is using /xpub/etc/in.rlogind
instead of /usr/etc/in.rlogind.

--FAIL-- [inet009] inetd entry for login service uses ‘/xpub/etc/
in.rlogind' which contains ‘/xpub/etc' which is group
‘daemon' and world writable.

--WARN-- [inet005w] Service shell is using /xpub/etc/in.rshd
instead of /usr/etc/in.rshd.

--FAIL-- [inet009] inetd entry for shell service uses ‘/xpub/etc/
in.rshd' which contains ‘/xpub/etc' which is group ‘dae-
mon' and world writable.

check_known

This script tests for known signs of an intruder. Directories known to be used by intruders are

checked for unexpected files. These directories include ‘lost+found' directories, system mail-spool
directories and window server directories. The setuid(2) system call is also checked to verify that
it is working properly.

--ALERT-- [kis001a] /usr/uucp/.sys is a directory."

--ALERT-- [kis002a] /usr/spool/uucppublic/.hushlogin is not zero-
length."

--WARN-- [kis008w] File ".stuff" in the mail spool, owned by ‘bin'.

check_netrc

The ‘check_netrc' script examines the .netrc files in user home directories. It reports if the permis-
sions on the file are incorrect (i.e. world readable). It also reports any entries in the .netrc file which
contain passwords which are not anonymous ftp entries.

--WARN-- [nrc002w] User imauser's .netrc file contains passwords
for non-anonymous ftp accounts.

--FAIL-- [nrc001f] User urauser's .netrc file is readable and
contains passwords for non-anonymous ftp accounts.

check_passwd

The ‘check_passwd' script performs the same functionality as the ‘check_group' script, except it
works with "passwd" sources. Sources of password information are cross referenced for conflicts
and also check for correct format.

--WARN-- [pass004w] UID conflict for login ID ‘smith' between
/etc/passwd (uid = 125) and NIS (uid = 1388).

--WARN-- [pass005w] Username conflict for uid 6 between /etc/passwd
(login ID sys) and NIS (login ID joeuser).

check_path

The ‘check_path' script checks the PATH variable as set in the various shell startup files. It checks
for ‘.' (dot) in the PATH, correct ownership and access permissions of pathnames in the PATH and
correct ownership and access permissions of executables in the PATH. By default, the script only
checks the PATH for the root account. It can be configured to check all users, though the author is
not comfortable with this.

--INFO-- [path008i] Setuid program /usr/bin/uux in root's PATH from
.cshrc is not owned by root (owned by uucp).

--WARN-- [path002w] /usr/bin/ls in root's PATH from .profile is not
owned by root (owned by bin).

--INFO-- [path006] The PATH set in root's .profile contains
‘/usr/bin' which contains ‘/usr' which is not owned by
root (owned by bin).

check_printcap

The script ‘check_printcap' checks the pathnames to filters used by printers for proper ownership
and access permissions. Since not all systems use the BSD print system, this script is invoked only
for systems on which it is used (there currently isn't an equivalent System V print system checking
script).

--WARN-- [pcap001w] Print control ‘if' for printer ‘lw2' uses

‘/usr/local/lib/topsif’ which contains ‘/usr/local/lib'
which is not owned by root (owned by bin).

check_perms

The ‘check_perms' script checks the ownership and permissions of system files. A database (spe-
cific to the platform) describes which files to check and what the expected permissions are. Files
and directories such as ‘/', ‘/etc', ‘/etc/passwd', ‘/etc/group' and ‘/etc/aliases' are a few examples of
the many files which are checked.

--WARN-- [perm019w] The owner of /etc should be root.

--WARN-- [perm019w] /etc should not have group write.

--WARN-- [perm003w] /sbin should not have group write.

--WARN-- [perm003w] /usr should not have group write.

check_rhosts

The ‘check_rhosts' script examines the .rhosts files in user home directories. It checks the permis-
sions on the files and examines the files, reporting entries with a '+', attempted comment entries,
entries that are only partially specified. This is a remote hostname with no remote username. There
is no direct security problem here, but it can lead to one as people carry a .rhosts file from site to site.

In addition, it is possible to configure the script to report hostnames that do not match a set of regular
expressions. A version of this script written in PERL is provided as well which attempts to verify
that the remote user is the same person as the local user (using ‘finger').

For large sites, with user home directories distributed across multiple NFS servers, it is possible to
configure this script to only check accounts with home directories on local filesytems. This can
greatly increase performance. This can also be done for ‘check_netrc' and ‘check_accounts'.

The ‘/etc/hosts.equiv' file is also examined. All trusted hosts are reported. Any included netgroups
are expanded and reported as well.

Checking accounts from /etc/passwd...

--WARN-- [rcmd004w] User snag's .rhosts file has a '+' for user
(host ourhost.tamu.edu).

Checking accounts from NIS...

--WARN-- [rcmd006w] User imauser's .rhosts file has group ‘tamug'
and world read access.

--WARN-- [rcmd006w] User urauser's .rhosts file has group ‘onet'
read access.

check_signatures

This script is used to validate system binaries. It does this through the use of a data file which con-
tains digital signatures, generated from distribution media, for important system binaries. There is
currently support for two different signature methods: the XEROX Secure Hash Function signa-
tures, commonly referred to as Snefru, and the RSA Data Security Inc., MD5 Message Digest Algo-
rithm. An output block size of 8 is used (256 bits) for the SNEFRU hash. The script auto-detects
the type of signature and generates the appropriate one for comparison.

The script reports any system binaries which do not match the stored signatures. It also reports sys-
tem binaries which are out of date in regards to security patches (using signatures generated from
the replacement binaries in the patches). This provides a means of determining quickly whether

critical security patches have been installed on a system. A system is being planned which will
allow up to date signature databases to be retrieved from a central site(s).

--WARN-- [sig004w] None of the following versions of /usr/bin/login
(-rwsr-xr-x) matched the /usr/bin/login on this machine.
>>>>>> Sun Patch ID 100630-01
>>>>>> Sun Patch ID 100631-01
>>>>>> Sun Patch ID 100633-01
>>>>>> SunOS 4.1.2 (security patch is 100630)

--WARN-- [sig015w] /usr/bin/mail is from Sun Patch ID 100224-03
(current is 100224-06)

--WARN-- [sig004w] None of the following versions of /usr/etc/
rpc.yppasswdd (-rwxr-xr-x)matched the
/usr/etc/rpc.yppasswdd on this machine.
>>>>>> SunOS 4.1.2

find_files

The ‘find_files' script searches through the file systems and locates files that might present a security
problem. These are

• setuid executables
• device files
• symbolic links to system files
• world writable directories
• files with an undefined owner or group
• files with unusual filenames

Setuid files are checked to see if they are scripts, or if they contain relative pathnames (an admit-
tedly crude check). It also compares the list of setuid files against a list prepared from distribution
media and reports any new setuid programs.

Any device files found in non-standard locations (i.e., not in /dev) are reported. The script under-
stands diskless clients and will automatically ignore the device directories for these as well. Other
directories can also be added to this list by setting a variable in the configuration file.

Any symbolic links to system files (such as /etc/passwd) are reported as well. While not directly a
security problem, an ill-placed ‘chown -R' or ‘chmod -R' (or equivalent) could create one.

World writable directories are reported, as they are often used by intruders as a place to store log
files. Unowned files are often an indication of a break-in. They also can lead to unexpected access
for an account.

The unusual file names includes files with spaces in them, leading '.' or other characters. The list of
file names is customizable via a variable which can be set in the configuration file.

check_embedded

The ‘check_embedded' script examines files and extracts any apparent pathnames which are
embedded in the files. These pathnames are checked for ‘‘proper'' ownership and access permis-
sions. These files indicated by these pathnames are then in turn checked for embedded pathnames.
This process is continued until no new pathnames are found, or a user specified search depth is
reached.

The initial list of files searched comes from two sources. The first is a static list specific to a plat-
form. For example, on SunOS 4.x systems, this would include the /etc/rc.* scripts. The second

source is from the other 'tiger' scripts. When the scripts are run from 'tiger' or 'tigercron', they gen-
erate lists of files that should be checked. For example, ‘check_path' will request that any execut-
able in root's path be checked, and ‘check_inetd' requests that all the servers defined in
/etc/inetd.conf be checked.

--WARN-- [embed002w] Path ‘/usr/sbin/fsck' is not owned by root
(owned by bin).
Embedded references in:
/sbin/mountall->/etc/init.d/MOUNTFSYS
/sbin/mountall->/etc/init.d/buildmnttab
/sbin/mountall->/etc/init.d/nfs.client

--WARN-- [embed003w] Path ‘/usr/sbin/ypinit' contains ‘/usr/sbin'
which is group ‘bin' writable.
Embedded references in:
/usr/lib/netsvc/yp/ypbind->/usr/sbin/sysidnet->
/etc/init.d/sysid.net

Miscellaneous checks

In addition to these standard checks, miscellaneous checks specific to a system are also performed.
Items such as the use of the ‘securenets' file on SunOS NIS servers and the removal of the "_writers"
property for printers on NeXTOS are examples of the checks performed.

--WARN-- [misc004w] The PROM monitor is not in secure mode.

--FAIL-- [misc003f] No /var/yp/securenets file.

crack_run

The script ‘crack_run' is used to perform password cracking. No password cracker is provided with
the 'tiger' system. It is expected that a tool such as Alec Muffett's 'Crack' will be used. ‘crack_run'
collects all password sources and runs the password cracking tool on them, and reports the results.
Since this can take days to complete (or longer), 'tiger' by default does not wait for this to complete.

--WARN-- [crk001w] The following login id's have weak passwords:
imauser urauser

Isn't this just COPS?

One common question is how does 'tiger' compare to the COPS package by Dan Farmer. There is
a lot of overlap between the two packages. Much of this is intentional. Dan Farmer allowed us to
borrow ideas and code from his COPS package. We are giving Dan (and anyone else) the same
ability in regards to 'tiger'.

There are advantages and disadvantages between the two packages. Note that most of this is sub-
jective and hence will no doubt be biased.

We feel that 'tiger' is easier to use than COPS for a person who is not familiar with systems admin-
istration. As stated earlier, once unpacked, all that is necessary is to run 'tiger' and a report will be
generated. The explain facility allows the administrator to get a better idea about the entries in the
report. One area that 'tiger' is lacking in is user documentation.

Another area we feel 'tiger' is at an advantage is based on part of the design structure, in which no
system files are referenced directly. This feature is what allows the auto-checking of multiple infor-
mation sources (for example /etc/passwd, NIS, NetInfo, etc) without having to alter the scripts
which perform the checks. This makes running the scripts easier for the administrator.

There are other areas that we feel 'tiger' is better than COPS. These include the use of digital sig-
natures for checking for security patches, the complete checking of pathnames containing symbolic
links, and the more thorough examination of system configuration files.

We recognize that COPS does have advantages over 'tiger'. The primary one is that COPS is a
"proven product". It has been used by thousands for two to three years now. Also, though 'tiger'
will attempt to run on platforms for which no configuration files exist, COPS is more likely to suc-
ceed in running. The use of newer shell features, primarily shell functions, prevents the use of 'tiger'
on any UNIX system which has an older Bourne shell. There are also miscellaneous checks per-
formed by COPS that have not been integrated into 'tiger'. COPS also includes the 'kuang' expert
system checker. There is no equivalent functionality in 'tiger'.

7. Observations

We have been using this combination of filtering, monitoring, and checking almost a year, with very
positive results. While our network monitoring tools continue to show incoming intrusion attempts
(unfortunately along with some outgoing attempts), we have had no major incidents of the type we
experienced last summer. The combination of approaches seems to have struck an appropriate bal-
ance between security and availability for our academic environment.

Our monitoring tools have produced some interesting statistics. During the last four weeks, for
example, we have observed the following number of incoming security events:

e-mail forgery 6
knob-turning 48
TCP attacks/events (X11, DNS zones, rshell ...) 30
UDP attacks/events (TFTP, SNMP ...) 7

Of these 91 incidents, 49 (or 54%) originated from .edu sites. Edu sites account, however, for only
30% of all internet hosts (according to the July 1993 Internet Domain Survey). This means that a
minority of hosts are accounting for a disproportionate majority of intrusion activity. One would
hope that other university networking groups would be actively trying to reduce these incidents, yet
of the requests for the etherscan tool, less than 25% have come from university sites.

8. Conclusions

A set of policies and tools for filtering, monitoring and checking has been developed in response to
a significant series of intrusions from internet. Each of these three areas has proved critical: the fil-
tering for its ability to protect machines from attack, the monitoring because it augments the filter
and has yielded significant information about the intruders and their methods, and the checking
tools for their ability to automate the task of checking and cleaning a large number of machines.
With these tools and associated policies, we have achieved an appropriate balance between security
and availability in an academic environment.

9. Availability

Drawbridge, the tiger scripts, and all monitoring tools other than etherscan are now available via
anonymous ftp in sc.tamu.edu:pub/security/TAMU. Due to export restrictions, the DES routines
used in drawbridge have been put in a separate tar file and are readable only by U.S.A. sites. Other
sites should have no problem either running the filter without encryption or dropping in their own
favorite encryption package.

The distribution of etherscan has been hotly debated within the TAMUSC group. One argument is
that etherscan should be freely released, as the crackers already have equivalent knowledge and

tools (they do) and restrictions would only hurt valid administrators. The counter argument is that
free availability of the intrusion signatures would enable the crackers to design better intrusions and
the availability of sources would provide novice crackers a significant help. Our resultant compro-
mise will be to provide copies to Network Information Center registered site contacts, given an offi-
cial request on respective letterhead. Requests should be sent to:

Dr. Dave Safford, Director
Supercomputer Center
Texas A&M University
MS 3363
College Station, TX 77843-3363

10.References

[1] D.B. Chapman. Network (In)Security through IP Packet Filtering, Proceedings of the Third
UNIX Security Symposium, September 1992.
(available from ftp.greatcircle.com as pub/pkt_filtering.ps.Z)

[2] Ranum. “Thinking about Firewalls”, available on the Internet

[3] Violino, Bob. “Are Your Networks Secure?” Information Week, April 12, 1993, page 30.

