
CONTENTS

Crossroads

Karel Kubat
e-tunity

2005

Abstract

Crossroads is a load balance and fail over utility for TCP based services. It is a daemon
program running in user space, and features extensive configurability, polling of back ends
using ’wakeup calls’, detailed status reporting, ’hooks’ for special actions when backend calls
fail, and much more. Crossroads is service-independent: it is usable for HTTP(S), SSH, SMTP,
DNS, etc.

Contents
1 Introduction 3

1.1 Obtaining Crossroads . 3
1.2 Copyright and Disclaimer . 3
1.3 Terminology . 3

2 Using Crossroads 4

3 The configuration 5
3.1 General language elements . 5

3.1.1 Empty lines and comments . 5
3.1.2 Keywords, numbers, identifiers, generic strings 5

3.2 Service definitions . 6
3.3 Backend definitions . 8
3.4 How back ends are selected in load balancing . 10

3.4.1 Bysize or byduration . 10
3.4.2 Averaging size and duration . 11
3.4.3 Specifying decays . 11
3.4.4 Adjusting the weights . 12

3.5 Configuration examples . 12
3.5.1 A load balancer for three webserver back ends 12
3.5.2 A HTTP forwarder when travelling . 15
3.5.3 SSH login with enforced idle logout . 16

4 Benchmarking 16
4.1 Environment . 16
4.2 Results . 17
4.3 Discussion . 17

1

CONTENTS

5 Compiling and Installing 17
5.1 Prerequisites . 17
5.2 Compiling and installing . 18
5.3 Configuring crossroads . 18
5.4 A boot script . 19

5.4.1 SysV Style Startup . 19
5.4.2 BSD Style Startup . 19

2

1 INTRODUCTION

1 Introduction
Crossroads is a daemon that basically accepts TCP connections at preconfigured ports, and
given a list of ’back ends’ distributes each incoming connection, so that a client process is
served. Additionally, crossroads maintains an internal administration of the back end con-
nectivity: if a back end isn’t usable, then the client request is handled using another back end.
Crossroads will then periodically check whether a previously not usable back end has come
to life yet. Also, crossroads can select back ends by estimating the load, so that balancing is
achieved.

Using this approach, crossroads serves as load balancer and fail over utility. Crossroads will
very likely not be as reliable as hardware based balancers, since it always will require a server
to run on. This server, in turn, may become a new Single Point of Failure (SPOS). However,
in situations where cost efficiency is an issue, crossroads may be a good choice. Furthermore,
crossroads can be deployed in situations where a hardware based balancing already exists and
augmenting service reliability is needed. Or, crossroads may be run off a diskless system, which
again improves reliability of the underlying hardware.

This document describes how to use crossroads, how to configure it in order to increase the
reliability of your systems, and how to compile the program from its sources.

1.1 Obtaining Crossroads
As quick reference, here are some important URL’s for Crossroads:

• http://public.e-tunity.com is the site that serves Crossroads and other packages.
You can browse this at leisure for documentation, sources, and so on.

• http://public.e-tunity.com/crossroads/crossroads-latest.tar.gz is the
’latest’ distribution archive. Instead of latest you can substitute a specific version, such as
0.07. Too many older versions however aren’t stored.

• http://public.e-tunity.com/crossroads/crossroads.html is the documen-
tation in HTML format (this text). Substitute .pdf for .html to get the documentation in
PDF format.

1.2 Copyright and Disclaimer
Crossroads is distributed as-is, without assumptions of fitness or usability. You are free to use
crossroads to your liking. It’s free, and as with everything that’s free: there’s also no warranty.

You are allowed to make modifications to the source code of crossroads, and you are al-
lowed to (re)distribute crossroads, as long as you include this text, all sources, and if applicable:
all your modifications, with each distribution.

While you are allowed to make any and all changes to the sources, I would appreciate
hearing about them. If the changes concern new functionality or bugfixes, then I’ll include
them in a next release, stating full credits.

1.3 Terminology
Throughout this document, the following terms are used: 1

A client is a process that initiates a network connection to get contact with some service.

A service or server process is a central application that accepts network connections from
clients and sevices them. Based on its configuration, crossroads will start one or more
services that wait for clients to connect.

1Many more meanings of the terms will exist – yes, I am aware of that. I’m using the terms here in a very strict sense.

3

2 USING CROSSROADS

Back ends are locations where crossroads looks in order to service its clients. Crossroads sits
’in between’ and does its tricks. Therefore, as far as the back ends are concerned, cross-
roads behaves like a client. As far as the true client is concerned, crossroads behaves like
the service. The communication is however transparent: neither client nor back end are
aware of the middle position of crossroads.

A session is a conversation between client and service, where data are transferred to and fro
over the network. As far as crossroads is concerned, a session is succesful if connections
are succesfully established and no errors on the network level occur. Crossroads isn’t
aware of service pecularities. E.g., when a webserver answers HTTP/1.0 500 Server
Error then crossroads will see this as a succesful session, though the user behind a
browser may think otherwise.

Listeners are programs that listen to a given TCP port. Based on its configuration, crossroads
starts a listener for each service.

Back end selection algorithms are methods by which crossroads determines which back end
it will talk to next. Crossroads has a number of built-in algorithms, which are configured
per service.

Back end states are the statusses of each back end that is known to crossroads. A back end
may be available, (temporarily) unavailble or truly down. When a back end is temporarily
unavailable, then crossroads will periodically check whether the back end has come to life
yet (that is, if configured so).

Load balancing means that an incoming client request is distributed over not just one back
end (which would be the case if you wouldn’t be running crossroads). Enabling load
balancing is nothing more than duplicating services over more than one back end, and
having something (in this case: crossroads) distribute the requests, so that per back end
the load doesn’t get too high.

Back end usage is measured by crossroads in order to be able to determine back end selection.
Crossroads stores information about the number of transferred bytes and about the ses-
sion duration. These numbers can be used to estimate which back end is the least used –
and therefore, presumably, the best candidate for a new request.

Fail over is almost always used when load balancing is in effect. The distributor of client
requests (crossroads of course) can also monitor back ends, so that incase a back end is
’down’, it is no longer accessed.

Service downtime normally occurs when a service is switched off. Downtime is obviously
avoided when fail over is in effect: a back end can be taken out of service in a controlled
manner, without any client noticing it.

2 Using Crossroads
Crossroads is started from the commandline, and highly depends on /etc/crossroads.conf
(the default configuration file). It supports a number of flags (e.g., to overrule the location of the
configuration file). The actual usage information is always obtained by typing crossroads
without any arguments. Crossroads then displays the allowed arguments.

This section shows the basic usage.

• crossroads start and crossroads stop are typical actions that are run from sys-
tem startup scripts. The meaning is self-explanatory.

• crossroads restart is a combination of the former two. Beware that a restart may
cause discontinuity in service; it is just a shorthand for typing the ’stop’ and ’start’ actions
after one another.

• crossroad status reports on each running service. Per service, the state of each back
end is reported.

4

3 THE CONFIGURATION

• crossroads tell service backend state is a command line way of telling crossroads that
a given back end, of a given service, is in a given state. Normally crossroads maintains
state information itself, but by using crossroads tell, a back end can be e.g. taken
’off line’ for servicing.

• crossroads services reports on the configured services. In contrast to crossroads
status, this option only shows what’s configured – not what’s up and running. There-
fore, crossroads services doesn’t report on back end states.

• crossroads sampleconf shows a sample configuration on screen. A good way of
quicky viewing the configuration file syntax, or of getting a start for your own configura-
tion /etc/crossroads.conf.

3 The configuration
The configuration that crossroads uses is normally stored in the file /etc/crossroads.conf.
This location can be overruled using the command line flag -c.

This section explains the syntax of the configuration file, and what all settings do.

3.1 General language elements
This section describes the general elements of the crossroads configuration language.

3.1.1 Empty lines and comments

Empty lines are of course allowed in the configuration. Crossroads recognizes three formats of
comment:

• C-style, between /* and */,

• C++-style, starting with // and ending with the end of the text line;

• Shell-style, starting with # and ending with the end of the text line.

Simply choose your favorite editor and use the comment that ’looks best’.2

3.1.2 Keywords, numbers, identifiers, generic strings

In a configuration file, statements are identified by keywords, such as service, verbosity.
These are reserved words.

Many keywords require an identifier as the argument. E.g, a service has a unique name,
which must start with a letter or underscore, followed by zero or more letters, underscores, or
digits. E.g., in the statement service myservice, the keyword is service and the identifier
is myservice.

Other keywords require a numeric argument. Crossroads knows only non-negative integer
numbers, as in port 8000. Here, port is the keyword and 8000 is the number.

Yet other keywords require ’generic strings’, such as hostname specifications or system com-
mands. Such generic strings contain any characters up to the terminating statement character
;.

Finally, an argument can be a ’boolean’ value. Crossroads knows true, false, yes, no,
on, off. The keywords true, yes and on all mean the same and can be used interchangeably;
as can the keywords false, no and off.

2I favor C or C++ comment. My favorite editor emacs can be put in cmode and nicely highlight what’s comment and
what’s not. And as a bonus it will auto-indent the configuration!

5

3 THE CONFIGURATION

3.2 Service definitions
Service definitions are blocks in the configuration file that state what is for each service. A
service definition starts with service, followed by a unique identifier, and by statements in {
and }. For example:

// Definition of service ’www’:
service www {

...

... // statements that define the

... // service named ’www’

...
}

The following list shows possible stateements.

Service definition statements define what a service should do. Possible definition statements
are shown below. Each statement is terminated by a semicolon (except for the backend
statement, which has its own block).

The port statement defines to which TCP port a service ’listens’. E.g. port 8000 says that
this service will accept connections on port 8000.

• Syntax: port number ;
• There is no default. This is a required setting.

The bindto statement is used in situations where crossroads should only listen to the stated
port at a given IP address. E.g., bindto 127.0.0.1 causes crossroads to ’bind’ the ser-
vice only to the local IP address. Network connections from other hosts won’t be serviced.
By default, crossroads binds a service to all presently active IP addresses at the invoking
host.

• Syntax: bindto ip-address ;
• where ip-address is a numeric IP address, such as 192.168.1.45, or the keyword
any

• Default: any

Verbosity statements come in two forms: verbosity on or verbosity off. When ’on’,
log messages to /var/log/messages are generated that show what’s going on.3

• Syntax: verbosity setting ;
• where setting is true, yes or on to turn verbosity on; or false, no, off to turn it

off.
• Default: off.

The dispatch mode controls how crossroads selects a back end from a list of active back ends.
The syntax is:

• dispatchmode roundrobin: Simply the ’next in line’ is chosen. E.g, when 3 back
ends are active, then the usage series is 1, 2, 3, 1, 2, 3, and so on.
Roundrobin dispatching is the default method, when no dispatchmode statement
occurs.

• dispatchmode random: Random selection. Probably only for stress testing.
• dispatchmode bysize [over sessions]: The next back end is the one that has

transferred the least number of bytes. This selection mechanism assumes that the
more bytes, the heavier the load.

3Actually, the messages go to syslog(3), using facility LOG_DAEMON and priority LOG_INFO. In most (Linux) cases
this will mean: output to /var/log/messages.

6

3 THE CONFIGURATION

The modifier over nsessions is optional. (The square brackets shown above are not
part of the statement but indicate optionality.) When given, the size load is computed
over the last stated number of sessions. When this modifier is absent, then the load
is computed over all sessions since startup.

• dispatchmode byduration [over sessions]: The next back end is the one that
served sessions for the shortest time. This mechanims assumes that the longer the
session, the heavier the load.

• dispatchmode byorder: The first back end is selected every time, unless it’s un-
available. In that case the second is taken, and so on.

The ’right’ dispatch mode will depend on the type of service. Given the fact that cross-
roads doesn’t know (and doesn’t care) what a stream of network traffic means, you have
to choose an appropriate dispatch mode to optimize load balancing. Note that the dis-
patch mode is totally irrelevant when your only concern is fail over. In most cases,
roundrobin will do the job just fine.

A reviving interval definition is needed when crossroads determines that a back end is tem-
porarily unavailable. This will happen when:

• The back end cannot be reached (network connection fails);
• The network connection to the back end suddenly dies.

An example of the definition is revivinginterval 10. When this reviving interval is
given, crossroads will check each 10 seconds whether unavailable back ends have woken
up yet. A back end is considered awake when a network connection to that back end can
succesfully be established.

• Syntax: revivinginterval number ;
• Default: 0, meaning no revivals will occur.

The maximum number of clients is specified using maxclients. There is one argument; the
number of concurrent established sessions that may be active within one service.
’Throttling’ the number of clients is a way of preventing Denial of Service (DOS) attacks.
Without a limit, numerous network connections may spawn so many server instances,
that the service ultimately breaks down and becomes unavailable.

• Syntax: maxclient number ;
• Default: 0, meaning that all client connections will be accepted.

The TCP back log size is a number that controls how many ’waiting’ network connections
may be queued, before a client simply cannot connect. The syntax is e.g. backlog 5 to
cause crossroads to have 5 waiting connections for 1 active session. The backlog queue
shouldn’t be too high, or clients will experience timeouts before they can actually connect.
The queue shouldn’t be too small either, because clients would be simply rejected. Your
mileage may vary.

• Syntax: backlog number ;
• Default: zero, which takes the operating system’s default value for socket back log

size.

Reporting based: the shared memory key. Different crossroad invocations must ’know’ of each
others activity. E.g, crossroad status must be able to get to the actual state infor-
mation of all running services. This is internally implemented through shared memory,
which is reserved using a key.
Normally crossroads will supply a shared memory key, based on the service port and
bitwise or-ed with a magic number. In situations where this conflicts with existing keys
(of other programs, having their own keys), you may supply a chosen value.
The syntax is e.g. shmkey 123456. The actual key value doesn’t matter much, as long
as it’s unique and as long as each invocation of crossroads uses it.

7

3 THE CONFIGURATION

• Syntax: shmkey number ;
• Default: 0, which means that crossroads will ’guess’ its own key, based on TCP port

and a magic number.

Session timeouts: Sometimes, clients simply won’t close a network connection which leads to
unnecessary resource usage. To avoid this, one might state sessiontimeout 300. This
instructs crossroads to consider a session where nothing has happened for 300 seconds as
’finished’. Crossroads will terminate the connection when this timeout is exceeded.

• Syntax: sessiontimeout number ;
• Default: 0, meaning that crossroads will not try to determine timeouts.

3.3 Backend definitions
Inside the service definitions as are described in the previous section, backend definitions must
also occur. Backend definitions are started by the keyword backend, followed by an identifier,
and defining statements inside { and }:

service myservice {
...
... // statements that define the
... // service named ’myservice’
...

backend mybackend {
...
... // statements that define the
... // backend named ’mybackend’
...

}
}

The backend definition statements are shown below.

Server: Each back end must be identified by the network name (server name) where it is lo-
cated. For example: server 10.1.1.23, or server web.mydomain.org.

• Syntax: server servername ;
• There is no default. This is a required setting.

Port: Besides the server specifier, the port definition is also required. It has one argument,
the (numeric) port number.

• Syntax: port number ;
• There is no default. This is a required setting.

Verbosity: Similar to service specifications, a backend can have its own verbosity (on or
off). When on, traffic to and fro this back end is reported.

• Syntax: verbosity setting ;
• where setting is true, yes or on to turn verbosity on; or false, no, off to turn it

off.
• Default: off.

Weight: To influence how backends are selected by size or by duration, a backend can specify
its ’weight’ in the process. The higher the weight, the less likely a back end will be chosen.
The default is 1.
The weighing mechanism only applies for dispatchmode bysize or byduration.
The weight is in fact a multiplier. E.g., if backend A has weight 2 and backend B has
weight 1, then backend B will be selected all the time, until its usage parameter is twice
as large as the parameter of A.

8

3 THE CONFIGURATION

• Syntax: weight number ;

Decay: To make sure that a ’spike’ of activity doesn’t influence the perceived load of a back
end forever, you may specify a certain decay. E.g, the statement decay 10 makes sure
that the load that crossroads computes for this back end (be it in seconds or in bytes) is
decreased by 10% each time that an other back end is hit.
This means that when a given back end is hit, then its usage data is updated according
to the session. However, when a different back end is hit, its usage is decreased by the
specified decay.

• Syntax: decay number ;
• where number is a percentage that decreases the back end usage when other back

ends are hit
• Default: 0

Event triggers: As special ’hooks’ for actions, two triggers are available: onfailure and
onsuccess. The argument to the triggers is a system command that is executed when a
session with the back end either fails or succeeds.

• Syntax: onfailure commandline ; and onsuccess commandline ;
• There is no default.

Debugging aids: Incase the traffic between client and backend must be debugged, the state-
ment dumptraffic filename can be issued. This causes the traffic to be dumped in hex-
adecimal format to the stated filename.
Traffic sent by the client is prefixed by a C, traffic sent by the back end is prefixed by a
B. Below is a sample traffic dump of a browser trying to get a HTML page. The server
replies that the page was not modified.

C 0000 47 45 54 20 68 74 74 70 3a 2f 2f 77 77 77 2e 63 GET http://www.c
C 0010 73 2e 68 65 6c 73 69 6e 6b 69 2e 66 69 2f 6c 69 s.helsinki.fi/li
C 0020 6e 75 78 2f 6c 69 6e 75 78 2d 6b 65 72 6e 65 6c nux/linux-kernel
C 0030 2f 32 30 30 31 2d 34 37 2f 30 34 31 37 2e 68 74 /2001-47/0417.ht
C 0040 6d 6c 20 48 54 54 50 2f 31 2e 31 0d 0a 43 6f 6e ml HTTP/1.1..Con
C 0050 6e 65 63 74 69 6f 6e 3a 20 63 6c 6f 73 65 0d 0a nection: close..
C 0060 55 73 65 72 2d 41 67 65 6e 74 3a 20 4d 6f 7a 69 User-Agent: Mozi
C 0070 6c 6c 61 2f 35 2e 30 20 28 63 6f 6d 70 61 74 69 lla/5.0 (compati
C 0080 62 6c 65 3b 20 4b 6f 6e 71 75 65 72 6f 72 2f 33 ble; Konqueror/3
C 0090 2e 33 29 20 28 4b 48 54 4d 4c 2c 20 6c 69 6b 65 .3) (KHTML, like
C 00a0 20 47 65 63 6b 6f 29 0d 0a 52 65 66 65 72 65 72 Gecko)..Referer
C 00b0 3a 20 68 74 74 70 3a 2f 2f 77 77 77 2e 63 73 2e : http://www.cs.
C 00c0 68 65 6c 73 69 6e 6b 69 2e 66 69 2f 6c 69 6e 75 helsinki.fi/linu
C 00d0 78 2f 6c 69 6e 75 78 2d 6b 65 72 6e 65 6c 2f 32 x/linux-kernel/2
C 00e0 30 30 31 2d 34 37 2f 30 34 31 38 2e 68 74 6d 6c 001-47/0418.html
C 00f0 0d 0a 49 66 2d 4e 6f 6e 65 2d 4d 61 74 63 68 3a ..If-None-Match:
C 0100 20 22 64 65 63 31 61 34 2d 62 63 62 2d 33 63 30 "dec1a4-bcb-3c0
C 0110 32 39 64 30 32 22 0d 0a 49 66 2d 4d 6f 64 69 66 29d02"..If-Modif
C 0120 69 65 64 2d 53 69 6e 63 65 3a 20 4d 6f 6e 2c 20 ied-Since: Mon,
C 0130 32 36 20 4e 6f 76 20 32 30 30 31 20 31 39 3a 35 26 Nov 2001 19:5
C 0140 30 3a 32 36 20 47 4d 54 0d 0a 41 63 63 65 70 74 0:26 GMT..Accept
C 0150 3a 20 74 65 78 74 2f 68 74 6d 6c 2c 20 69 6d 61 : text/html, ima
C 0160 67 65 2f 6a 70 65 67 2c 20 69 6d 61 67 65 2f 70 ge/jpeg, image/p
C 0170 6e 67 2c 20 74 65 78 74 2f 2a 2c 20 69 6d 61 67 ng, text/*, imag
C 0180 65 2f 2a 2c 20 2a 2f 2a 0d 0a 41 63 63 65 70 74 e/*, */*..Accept
C 0190 2d 45 6e 63 6f 64 69 6e 67 3a 20 78 2d 67 7a 69 -Encoding: x-gzi
C 01a0 70 2c 20 78 2d 64 65 66 6c 61 74 65 2c 20 67 7a p, x-deflate, gz
C 01b0 69 70 2c 20 64 65 66 6c 61 74 65 0d 0a 41 63 63 ip, deflate..Acc

9

3 THE CONFIGURATION

C 01c0 65 70 74 2d 43 68 61 72 73 65 74 3a 20 75 74 66 ept-Charset: utf
C 01d0 2d 38 2c 20 75 74 66 2d 38 3b 71 3d 30 2e 35 2c -8, utf-8;q=0.5,
C 01e0 20 2a 3b 71 3d 30 2e 35 0d 0a 41 63 63 65 70 74 *;q=0.5..Accept
C 01f0 2d 4c 61 6e 67 75 61 67 65 3a 20 65 6e 0d 0a 48 -Language: en..H
C 0200 6f 73 74 3a 20 77 77 77 2e 63 73 2e 68 65 6c 73 ost: www.cs.hels
C 0210 69 6e 6b 69 2e 66 69 0d 0a 0d 0a inki.fi....
B 0000 48 54 54 50 2f 31 2e 30 20 33 30 34 20 4e 6f 74 HTTP/1.0 304 Not
B 0010 20 4d 6f 64 69 66 69 65 64 0d 0a 44 61 74 65 3a Modified..Date:
B 0020 20 54 75 65 2c 20 31 32 20 4a 75 6c 20 32 30 30 Tue, 12 Jul 200
B 0030 35 20 30 39 3a 34 39 3a 34 37 20 47 4d 54 0d 0a 5 09:49:47 GMT..
B 0040 43 6f 6e 74 65 6e 74 2d 54 79 70 65 3a 20 74 65 Content-Type: te
B 0050 78 74 2f 68 74 6d 6c 3b 20 63 68 61 72 73 65 74 xt/html; charset
B 0060 3d 69 73 6f 2d 38 38 35 39 2d 31 0d 0a 4c 61 73 =iso-8859-1..Las
B 0070 74 2d 4d 6f 64 69 66 69 65 64 3a 20 4d 6f 6e 2c t-Modified: Mon,
B 0080 20 32 36 20 4e 6f 76 20 32 30 30 31 20 31 39 3a 26 Nov 2001 19:
B 0090 35 30 3a 32 36 20 47 4d 54 0d 0a 41 67 65 3a 20 50:26 GMT..Age:
B 00a0 33 32 33 0d 0a 58 2d 43 61 63 68 65 3a 20 48 49 323..X-Cache: HI
B 00b0 54 20 66 72 6f 6d 20 78 79 6e 69 78 2e 65 2d 74 T from xynix.e-t
B 00c0 75 6e 69 74 79 2e 63 6f 6d 0d 0a 58 2d 43 61 63 unity.com..X-Cac
B 00d0 68 65 2d 4c 6f 6f 6b 75 70 3a 20 48 49 54 20 66 he-Lookup: HIT f
B 00e0 72 6f 6d 20 78 79 6e 69 78 2e 65 2d 74 75 6e 69 rom xynix.e-tuni
B 00f0 74 79 2e 63 6f 6d 3a 33 31 32 38 0d 0a 50 72 6f ty.com:3128..Pro
B 0100 78 79 2d 43 6f 6e 6e 65 63 74 69 6f 6e 3a 20 63 xy-Connection: c
B 0110 6c 6f 73 65 0d 0a 0d 0a lose....

Turning on traffic dumps will significantly slow down crossroads.

• Syntax: dumptraffic filename ;
• There is no default.

3.4 How back ends are selected in load balancing
In order to tune your load balancing, you’ll need to understand how crossroads computes
usage, how weighing works, and so on. In this section we’ll focus on dispatchmode bysize
and dispatchmode byduration only: the other dispatching types are self-explanatory.

3.4.1 Bysize or byduration

As stated before, crossroads doesn’t know ’what a service does’ and how to judge whether a
given back end is very busy or not. You must therefore give the right hints:

• In general, a service which is CPU bound, will be more busy when it takes longer to
process a request. The dispatch mode byduration is appropriate here.

• In contrast, a service which is filesystem bound, will be more busy when more data are
transferred. The dispatch mode bysize is apppropriate.

• The dispatch mode byduration can also be used when network latency is an issue.
E.g., if your balancer has back ends that are geograpically distributed, then byduration
would be a good way to select well available back ends.

• Furthermore it is noteworthy that dispatchmode byduration is not usable for inter-
active processes such as SSH logins. Idle time of a login adds to the duration, while caus-
ing (almost) no load. Mode byduration should only be used for automated processes
that don’t wait for user interaction (e.g., SOAP calls and other HTTP requests).

10

3 THE CONFIGURATION

3.4.2 Averaging size and duration

The configuration statement dispatchmode bysize or byduration allows an optional mod-
ifier over number, where the stated number represents a session count. When this modifier is
present, then crossroads will use a moving average over the last n sessions to compute duration
and size figures.

In the real world you’ll always want this modifier. E.g., consider two back ends that are
running for years now, and one of them is suddenly overloaded and very busy. When the
over modifier is absent, then the sudden load will hardly show up in the usage figures – it will
flatten out due to the large usage figures already stored in the years of service.

In contrast, when e.g. over 3 is in effect, then a sudden load does show up – because it
highly contributes to the average of three sessions.

3.4.3 Specifying decays

Decays are also only relevant when crossroads computes the ’next best back end’ by size (bytes)
or duration. E.g., imagine two back ends A and B, both averaged over say 3 sessions.

Now when back end A is suddenly hit by a large request (a ’spike’), its average would go
up accordingly. But the back end would never again be used, unless B also received a similar
spike, because A’s ’usage data’ would forever be larger than B’s data.

For that reason, you should in real situations probably always specify a decay, so that cross-
roads recovers from spikes. The below configuration illustrates this:

/* Definition of the service */
service soap {

/* Local TCP port */
port 8080;

/* We’ll select back ends by the processing

* duration

*/
dispatchmode byduration over 3;

/* First back end: */
backend A {

/* Back end IP address and port */
server 10.1.1.1;
port 8080;
/* When this back end is NOT hit because

* the other one is less busy, then the

* usage parameters decay 10% per session

*/
decay 10;

}

/* Second back end: */
backend B {

server 10.1.1.2;
port 8080;
decay 10;

}
}

11

3 THE CONFIGURATION

3.4.4 Adjusting the weights

The back end modifier weight is useful in situations where your back ends differ in respect
to performance. E.g,. your back ends may be geographically distributed, and you know that a
given back end is difficult to reach and often experiences network lag.

Or you may have one primary back end, a system with a fast CPU and enough memory,
and a small fall-back back end, with a slow CPU and short on memory. In that case you know
in advance that the second back end should be used only rarely.

In such cases you will know in advance that the best performing back ends should be se-
lected the most often. Here’s where the weight statement comes in: you can simply increase
the weight of the back ends with the least performance, so that they are selected less frequently.

E.g., consider the following configuration:

service soap {
port 8080;
dispatchmode byduration over 3;
backend A {

server 10.1.1.1;
port 8080;
decay 20;

}
backend B {

server 10.1.1.2;
port 8080;
weight 2;
decay 10;

}
backend C {

server 10.1.1.3;
port 8080;
weight 4;
decay 5;

}
}

This will cause crossroads to select back ends by the processing time, averaging over the
last three sessions. However, backend B will kick in only when its usage is half of the usage of
A (back end B is probably only half as fast as A). Backend C will kick in only when its usage is
a quarter of the usage of A, which is half of the usage of B (back end C is probably very weak,
and just a fall-back system incase both A and B crash). Note also that A’s usage data decay
much faster than B’s and C’s.

3.5 Configuration examples
As a general hint, use crossroads sampleconf to view the most up-to-date examples of
configurations. The description below shows a few examples too.

3.5.1 A load balancer for three webserver back ends

The following configuration example binds crossroads to port 80 of the current server, and dis-
tributes the load over three back ends. This configuration shows most of the possible settings.

service www {

/* Port on which we’ll listen in this service: required. */
port 8000;

12

3 THE CONFIGURATION

/* What IP address should this service listen? Default is ’any’.

* Alternatively you can state an explicit IP address, such as

* 127.0.0.1; that would bind the service only to ’localhost’. */
bindto any;

/* Verbose reporting or not. Default is off. */
verbosity on;

/* Dispatching mode, or: How to select a back end for an incoming

* request. Possible values:

* roundrobin: just the next back end in line

* random: like roundrobin, but at random to make things more

* confusing. Probably only good for testing.

* bysize: The backend that transferred the least nr of bytes

* is the next in line. As a modifier you can say e.g.

* bysize over 10, meaning that the 10 last sessions will

* be used to compute the transfer size, instead of all

* transfers.

* byduration: The backend that was active for the shortest time

* is the next in line. As a modifier you can say e.g.

* byduration of 10 to compute over the last 10 sessions.

* byorder: The first available back end is always taken.

*/
dispatchmode byduration over 5;

/* Interval at which we’ll check whether a temporarily unavailable

* backend has woken up.

*/
revivinginterval 5;

/* TCP backlog of connections. Default is 0 (no backlog, one

* connection may be active).

*/
backlog 5;

/* For status reporting: a shared memory key. Default is the same

* as the port number, OR-ed by a magic number.

*/
shmkey 8000;

/* This controls when crossroads should consider a session as

* finished even when the TCP sockets weren’t closed. This is to

* avoid hanging connections that don’t do anything. NOTE THAT when

* crossroads cuts off a session due to timeout exceed, this is

* not marked as a failure, but as a success. Default is 0: no timeout.

*/
sessiontimeout 300;

/* The max number of allowed client sessions. When present, connections

* won’t be accepted if the max is about to be exceeded. When

* absent, all connections will be accepted, which might be misused

* for a DOS attack.

*/

13

3 THE CONFIGURATION

maxclients 300;

/* Now let’s define a couple of back ends. Number 1: */
backend www_backend_1 {

/* The server and its port, the minimum configuration. */
server httpserver1;
port 9010;
/* The ’decay’ of usage data of this back end. Only relevant

* when the whole service has ’dispatchmode bysize’ or

* ’byduration’. The number is a percentage by which the usage

* parameter is decreased upon each session of an other back

* end.

*/
decay 10;

/* To see what’s happening in /var/log/messages: */
verbosity on;

}

/* The second one: */
backend www_backend_2 {

/* Server and port */
server httpserver2;
port 9011;

/* Verbosity of reporting when this back end is active */
verbosity on;

/* Decay */
decay 10;

/* Event triggers for system commands upon succesful activation

* and upon failure.

*/
onsuccess echo ’success on backend 2’ | mail root;
onfailure echo ’failure on backend 2’ | mail root;

}

/* And yet another one.. this time we will dump the traffic

* to a trace file

*/
backend www_backend_3 {

server httpserver3;
verbosity on;
port 9000;
verbosity on;
decay 10;
dumptraffic /tmp/backend.3.log;

}
}

14

3 THE CONFIGURATION

3.5.2 A HTTP forwarder when travelling

As another example, here’s my crossroads.conf that I use on my Linux laptop. The prob-
lem that I face is that I need many HTTP proxy configurations (at home, at customers’ sites and
so on) but I’m too lazy to reconfigure browsers all the time.

Here’s how it used to be before crossroads:

• At home, I would surf through a squid proxy on my local machine. The browser proxy
setting is then http://localhost:3128.

• Sometimes I start up an SSH tunnel to our offices. The tunnel has a local port 3129,
and connects to a squid proxy on our e-tunity server. Hence, the browser proxy is then
http://localhost:3129.

• At a customer’s location I need the proxy http://10.120.34.113:8080, because they
have configured it so.

• And in yet other instances, I use a HTTP diagnostic tool charles that sits between browser
and website and shows me what’s happening. I run charles on my own machine and it
listens to port 8888, behaving like a proxy. The browser configuration for the proxy is
then http://localhost:8888.

Here’s how it works with a crossroads configuration:

• I have configured my browsers to use http://localhost:8080 as the proxy. For all
situations.

• I use the following crossroads configuration, and let crossroads figure out which proxy
backend works, and which doesn’t. Note two particularities:

– The statement dispatchmode byorder. This makes sure that once crossroads de-
termines which backend works, it will stick to it. This usage of crossroads doesn’t
need to balance over more than one back end.

– the statement bindto 127.0.0.1 makes sure that requests from other interfaces
than loopback won’t get serviced.

service HttpProxy {
port 8080;
bindto 127.0.0.1;
verbosity on;
dispatchmode byorder;
revivinginterval 15;

backend Charles {
server 127.0.0.1;
port 8888;
verbosity on;

}

backend CustomerProxy {
server 10.120.34.113;
port 8080;
verbosity on;

}

backend SshTunnel {
server 127.0.0.1;
port 3129;

}

15

4 BENCHMARKING

backend LocalSquid {
server 127.0.0.1;
port 3128;
verbosity on;

}
}

As a final note, the commandline argument tell can be used to influence crossroad’s own
detection mechanism of back end availability detection. E.g., if in the above example the back
ends SshTunnel and LocalSquid are both active, then crossroads tell httpproxy
sshtunnel down will ’take down’ the back end SshTunnel – and will automatically cause
crossroads to switch to LocalSquid.

3.5.3 SSH login with enforced idle logout

The following example shows how crossroads ’throttles’ SSH logins. Connections are accepted
on port 22 (the normal SSH port) and forwards these to the actual SSH daemon which is run-
ning on port 2222.

Note the usage of the sessiontimeout directive. This makes sure that users are logged
out after 10 minutes of inactivity. Note also the maxclients setting, this makes sure that no
more than 10 concurrent logins occur.

service Ssh {
port 22;
backlog 5;
maxclients 10;
sessiontimeout 600;
backend TrueSshDaemon {

server 127.0.0.1;
port 2222;

}
}

4 Benchmarking
As a small benchmark, this section shows how crossroads affects the transmitting of HTML
data when used as an intermediate ’station’ through which all data travels.

4.1 Environment
The benchmark was run on a system where the following was varied:

1. A website was recursively spidered through a local squid proxy. The spidering was re-
peated 10 times, the total was recorded.

2. Crossroads was placed in front of the squid proxy, and the website was again recursively
spidered. Again, the spidering was repeated 10 times and the total was recorded.

The crossroads configuration of the second alternative is shown below:

service HttpProxy {
port 8080;
verbosity on;
backend LocalSquid {

server 127.0.0.1;

16

5 COMPILING AND INSTALLING

port 3128;
verbosity on;

}
}

4.2 Results
The results of this test are that crossroads causes a negligible delay, if it is statistically relevant
at all. Without crossroads, the timing results are:

real 0m8.146s
user 0m0.130s
sys 0m0.253s

When using crossroads as a middle station, the results are:

real 0m9.481s
user 0m0.141s
sys 0m0.230s

4.3 Discussion
The above shown results are quite favorable to crossroads. However, one should know that
situations will exist where crossroads leans towards the ’worst case’ scenario, causing up to
50% delay.

E.g., imagine a test where a wget command retrieves a HTML document from an Apache
server on localhost. Now we have (almost) no overhead due to network throttling, host-
name lookups and so on. When this test would be run either with or without crossroads in
between, then theoretically, crossroads would cause a much larger delay, because it has to read
from the server, and then write the same information to wget. Each read/write occurs twice
when crossroads sits in between.

This worst case scenario will however (fortunately) occur only very seldom in the real
world:

• Normally network issues, such as the above mentioned host name lookups or through-
put restrictions, will add significantly to the duration of a request. The ’twice as many’
read/writes caused by crossroads are then relatively irrelevant.

• Normally a significant amount of time will be spent in a back end, due to processing
(e.g., when calling a servlet on a back end). Again, this processing time will weigh much
heavier than the multiple read/writes.

5 Compiling and Installing

5.1 Prerequisites
The creation of crossroads requires:

• Standard Unix tools, such as sed, awk, Perl (5.00 or better);

• A POSIX-compliant C compiler;

• The grammar generation tools bison and flex;

• Support for SYSV IPC, networking and so on.

Basically a Linux or Apple MacOSX box will do nicely once you make sure that bison and
flex are installed. To compile and install crossroads, follow these steps.

17

5 COMPILING AND INSTALLING

5.2 Compiling and installing
• Obtain the source distribution. It can be found on http://public.e-tunity.com.

The distribution comes as an archive crossroads-X.YY.tar.gz, where X.YY is a ver-
sion number.

• Unpack the archive in a sources directory using tar xzf crossroads-X.YY.tar.gz.
The contents spill into a subdirectory crossroads/.

• Change-dir into the directory.

• Next, edit etc/Makefile.def and verify that all compilation settings are to your lik-
ings. The settings are explained in the file. Note that the default distribution of Makefile.def
is suited for Linux or Apple MacOSX systems. On other Unices, or on non-Unix systems,
you must particularly pay attention to SET_PROC_TITLE_BY.... When in doubt, com-
ment out all SET_PROC_TITLE... settings. Crossroads will work nevertheless, but it
won’t show nice titles in ps listings.

• Now crossroads is ready for compilation. Do a make local followed by make install.
The latter step may have to be done by the user root if the BINDIR setting of etc/Makefile.def
points to a root-owned directory.

• The documentation doesn’t install in this process. If you want to install the documenta-
tion, then proceed as follows:

– Optionally, cp doc/crossroads.html htmldirectory/ ; where htmldirectory is the
destination directory for your HTML manuals;

– Optionally, cp doc/crossroads.pdf pdfdirectory/ ; where pdfdirectory is the desti-
nation directory for your PDF manuals;

– Optionally, cp doc/crossroads.manmanualdirectory/man1/crossroads.1, where
manualdirectory is e.g. /usr/man, /usr/share, /usr/local/man, /usr/local/share.
Any possibility is valid, as long as manualdirectory has a subdirectory man1/;

– If your manual page system supports compressed manual pages, then you can save
some space with gzip -c < doc/crossroads.man >manualdirectory/man1/crossroads.1.gz.

5.3 Configuring crossroads
Now that the binary is available on your system, you need to create a suitable /etc/crossroads.conf.
Use this manual or the output of crossroads samplconf to get started.

Once you have the configuration ready, start crossroads with crossroads start. Test
the availability of your services and back ends. Monitor how crossroads is doing with:

• In one terminal, run the script:

while [1] ; do
tput clear
crossroads status
sleep 3

done

• In another terminal, run:

while [1] ; do
tput clear
ps ax | grep crossroads | grep -v grep
sleep 3

done

• In yet another terminal, run tail -f /var/log/messages.

18

5 COMPILING AND INSTALLING

Now thoroughly test the availability of your back ends through crossroads. The status dis-
play will show an updated view of which back ends are selected and how busy they are. The
process list will show which crossroads daemons are running. Finally, the tailing of /var/log/messages
shows what’s going on – especially if you have verbosity true statements in the configu-
ration.

5.4 A boot script
Finally, you may want to create a boot-time startup script. The exact procedure depends on the
used Unix flavor.

5.4.1 SysV Style Startup

On SysV style systems, there’s a startup script directory /etc/init.d where bootscripts for
all utilities are located. You may have the chkconfig utility to automate the task of inserting
scripts into the boot sequence, but otherwise the steps will resemble the following.

• Create a script crossroads in /etc/init.d similar to the following:

#!/bin/sh
/usr/local/bin/crossroads -v $@

The stated directory /usr/local/bin must correspond with the installation path. The
flag -v causes the startup to be more ’verbose’. However, once daemonized, the verbosity
is controlled by the appropriate statements in the configuration.

• Determine your ’runlevel’: usually 3 when your system is running in text-mode only, or
5 when you are a graphical interface. If your runlevel is 3, then:

root> cd /etc/rc.d/rc3.d
root> ln -s /etc/init.d/crossroads S99crossroads
root> ln -s /etc/init.d/crossroads K99crossroads

This creates startup (S*) and stop (K*) links that will be run when the system enters or
leaves a given runlevel.
If your runlevel is 5, then the right cd command is to /etc/rc.d/rc5.d. Alternatively,
you can create the symlinks in both runlevel directories.

5.4.2 BSD Style Startup

On BSD style systems, daemons are booted directly from /etc/rc and related scripts. Incase
you have a file /etc/rc.local, edit it, and add the statement:

/usr/local/bin/crossroads start

If your BSD system lacks /etc/rc.local, then you may need to start Crossroads from
/etc/rc. Your mileage may vary.

19

