
OTRS 3.1 - Admin Manual

OTRS 3.1 - Admin Manual
Copyright © 2003-2012 OTRS AG

René Bakker, Stefan Bedorf, Michiel Beijen, Shawn Beasley, Hauke Böttcher, Jens Bothe, Udo Bretz, Martin Edenhofer, Carlos Javier
García, Martin Gruner, Manuel Hecht, Christopher Kuhn, André Mindermann, Marc Nilius, Elva María Novoa, Henning Oschwald,
Martha Elia Pascual, Thomas Raith, Carlos Fernando Rodríguez, Stefan Rother, Burchard Steinbild, Daniel Zamorano.

This work is copyrighted by OTRS AG.

You may copy it in whole or in part as long as the copies retain this copyright statement.

The source code of this document can be found at source.otrs.org [http://source.otrs.org/viewvc.cgi/doc-admin/].

UNIX is a registered trademark of X/Open Company Limited. Linux is a registered trademark of Linus Torvalds.

MS-DOS, Windows, Windows 95, Windows 98, Windows NT, Windows 2000, Windows XP, Windows 2003, Windows Vista and
Windows 7 are registered trademarks of Microsoft Corporation. Other trademarks and registered trademarks are: SUSE and YaST
of SUSE Linux GmbH, Red Hat and Fedora are registered trademarks of Red Hat, Inc. Mandrake is a registered trademark of
MandrakeSoft, SA. Debian is a registered trademark of Software in the Public Interest, Inc. MySQL and the MySQL Logo are registered
trademarks of Oracle Corporation and/or its affiliates.

All trade names are used without the guarantee for their free use and are possibly registered trade marks.

OTRS AG essentially follows the notations of the manufacturers. Other products mentioned in this manual may be trademarks of the
respective manufacturer.

http://source.otrs.org/viewvc.cgi/doc-admin/
http://source.otrs.org/viewvc.cgi/doc-admin/

iii

Table of Contents
Preface .. xii
1. Trouble Ticket Systems - The Basics .. 1

What is a trouble ticket system, and why do you need one? 1
What is a trouble ticket? .. 2

2. OTRS Help Desk ... 3
Basics ... 3
Features .. 3

New features of OTRS 3.1 ... 5
Top new features of OTRS 3.0 ... 9
New features of OTRS 2.4 ... 10

Hardware and software requirements .. 13
Perl support ... 13
Web server support ... 13
Database support ... 13
Web browser support ... 14

Community .. 14
Commercial Support and Services for OTRS ... 14

3. Installation ... 15
The simple way - Installation of pre-built packages .. 15

Installing the RPM on a SUSE Linux server ... 15
Installing OTRS on a CentOS system ... 17
Installing OTRS on a Debian system ... 17
Installing OTRS on a Ubuntu system .. 17
Installing OTRS on Microsoft Windows systems ... 17

Installation from source (Linux, Unix) .. 17
Preparing the installation from source ... 17
Installation of Perl modules .. 18
Configuring the Apache web server .. 21
Configuring the database ... 22
Setting up the cron jobs for OTRS .. 28

Upgrading the OTRS Framework .. 32
Upgrading Windows Installer .. 37
Upgrading Microsoft SQL Server Data Types .. 37

4. First steps ... 38
Agent web interface ... 38
Customer web interface ... 38
Public web interface ... 39
First login .. 40
The web interface - an overview ... 40
What is a queue? .. 42
User preferences ... 43

5. The ADMIN area of OTRS ... 45
Basics ... 45
Agents, Groups and Roles ... 45

Agents ... 45
Groups .. 46
Roles ... 49

Customers and Customer Groups ... 53
Customers ... 53
Customer Groups ... 55

Queues ... 56

OTRS 3.1 - Admin Manual

iv

Salutations, signatures, attachments and responses .. 58
Salutations ... 58
Signatures ... 59
Attachments ... 60
Responses .. 63

Auto responses .. 65
Email addresses .. 68
Notifications ... 69
SMIME .. 71
PGP .. 72
States .. 72
SysConfig .. 73
Using mail accounts ... 74
Filtering incoming messages .. 75
Executing automated jobs with the GenericAgent ... 77
Admin email .. 78
Session management ... 79
System Log ... 80
SQL queries via the SQL box ... 81
Package Manager .. 81
Web Services .. 82
Dynamic Fields .. 83

6. System Configuration ... 84
OTRS config files ... 84
Configuring the system through the web interface .. 84

7. Sending/Receiving emails ... 86
Sending emails .. 86

Via Sendmail (default) .. 86
Via SMTP server or smarthost .. 86

Receiving emails .. 86
Mail accounts configured via the OTRS GUI .. 86
Via command line program and procmail (otrs.PostMaster.pl) 88
Fetching emails via POP3 or IMAP and fetchmail for otrs.PostMaster.pl 88
Filtering/dispatching by OTRS/PostMaster modules (for more complex
dispatching) ... 89

8. Time related functions .. 91
Setting up business hours, holidays and time zones .. 91

Business Hours ... 91
Fixed date holidays .. 91
TimeVacationDaysOneTime .. 91

Automated Unlocking ... 92
9. Ticket Responsibility & Ticket Watching .. 93

Ticket Responsibility ... 93
Ticket watching .. 94

10. Customizing the PDF output ... 96
11. Using external backends .. 97

Customer data ... 97
Customer user backend ... 97

Database (Default) ... 97
LDAP ... 101
Use more than one customer backend with OTRS ... 104

Backends to authenticate Agents and Customers ... 107
Authentication backends for Agents .. 107
Authentication backends for Customers ... 110

OTRS 3.1 - Admin Manual

v

Customize the customer self-registration ... 112
Customizing the web interface .. 112
Customer mapping ... 112
Customize the customer_user table in the OTRS DB 114

12. States .. 116
Predefined states ... 116

New ... 116
Open ... 116
Pending reminder ... 116
Pending auto close- ... 116
Pending auto close+ .. 116
Merged .. 116
Closed Successful .. 116
Closed Unsuccessful .. 116

Customizing states ... 117
13. Modifying ticket priorities .. 120
14. Creating your own themes .. 121
15. Localization of the OTRS frontend ... 122
16. PGP .. 123
17. S/MIME ... 127
18. Access Control Lists (ACLs) ... 131

Introduction .. 131
Examples ... 131
Reference .. 133

19. Stats module .. 137
Handling of the module by the agent ... 137

Overview ... 137
Generate and view reports ... 138
Edit / New .. 141
Import .. 146

Administration of the stats module by the OTRS administrator 147
Permission settings, Groups and Queues .. 147
SysConfig .. 147

Administration of the stats module by the system administrator 147
Data base table ... 148
List of all files .. 148
Caching ... 148
otrs.GenerateStats.pl .. 148
Automated stat generation - Cronjob ... 149
Static stats ... 149
Using old static stats .. 149
Default stats .. 150

20. Generic Interface .. 151
Generic Interface Layers .. 151

Network Transport .. 152
Data Mapping .. 152
Controller ... 152
Operation (OTRS as a provider) ... 152
Invoker (OTRS as a requester) ... 152

Generic Interface Communication Flow ... 153
OTRS as Provider .. 153
OTRS as Requester ... 154

Web Services .. 156
Web Service Graphical Interface ... 156

OTRS 3.1 - Admin Manual

vi

Web Service Overview ... 156
Web Service Add ... 157
Web Service Change ... 158

Web Service Command Line Interface .. 172
Web Service Configuration ... 172
Web Service Debugger .. 173

Web Service Configuration ... 174
Configuration Details .. 176

Connectors .. 181
Bundled Connectors ... 182
Examples: .. 192

21. OTRS Scheduler .. 197
Scheduler Graphical Interface ... 197

Scheduler Not Running Notification ... 197
Start Scheduler .. 198

Scheduler Command Line Interface .. 198
Unix / Linux .. 199
Windows .. 201

22. Dynamic Fields .. 203
Introduction .. 203
Configuration ... 203

Adding a Dynamic Field ... 204
Text Dynamic Field Configuration .. 206
Textarea Dynamic Field Configuration ... 207
Checkbox Dynamic Field Configuration ... 208
Dropdown Dynamic Field Configuration ... 209
Multiselect Dynamic Field Configuration .. 210
Date Dynamic Field Configuration ... 211
Date / Time Dynamic Field Configuration ... 212
Editing a Dynamic Field .. 214
Showing a Dynamic Field on a Screen .. 215
Setting a Default Value by a Ticket Event Module
Set a Default Value by User Preferences ..
Updating from OTRS 3.0 ...

23. Additional applications ...
FAQ ..

24. Performance Tuning ..
OTRS ...

TicketIndexModule ...
TicketStorageModule ...
Archiving Tickets ...

Database ..
MySQL ...
PostgreSQL ..

Webserver ..
Pre-established database connections ..
Preloaded modules - startup.pl ...
Reload Perl modules when updated on disk ..
Choosing the Right Strategy ..
mod_gzip/mod_deflate ...

25. Backing up the system ..
Backup ...
Restore ...

A. Additional Resources ..

OTRS 3.1 - Admin Manual

vii

Homepage OTRS.org ..
Mailing lists ...
Bug tracking ..
Commercial Support ..

B. Configuration Options Reference ...
Framework ..

Core ...
Core::LinkObject ..
Core::Log ..
Core::MIME-Viewer ..
Core::MirrorDB ..
Core::PDF ...
Core::Package ...
Core::PerformanceLog ...
Core::ReferenceData ...
Core::SOAP ..
Core::Sendmail ..
Core::Session ..
Core::SpellChecker ..
Core::Stats ..
Core::Stats::Graph ...
Core::Time ..
Core::Time::Calendar1 ...
Core::Time::Calendar2 ...
Core::Time::Calendar3 ...
Core::Time::Calendar4 ...
Core::Time::Calendar5 ...
Core::Time::Calendar6 ...
Core::Time::Calendar7 ...
Core::Time::Calendar8 ...
Core::Time::Calendar9 ...
Core::Web ...
Core::WebUserAgent ...
Crypt::PGP ..
Crypt::SMIME ..
Frontend::Admin::AdminCustomerUser ...
Frontend::Admin::ModuleRegistration ..
Frontend::Agent ...
Frontend::Agent::Dashboard ...
Frontend::Agent::LinkObject ...
Frontend::Agent::ModuleMetaHead ...
Frontend::Agent::ModuleNotify ..
Frontend::Agent::ModuleRegistration ..
Frontend::Agent::NavBarModule ...
Frontend::Agent::Preferences ...
Frontend::Agent::SearchRouter ..
Frontend::Agent::Stats ...
Frontend::Customer ...
Frontend::Customer::Auth ..
Frontend::Customer::ModuleMetaHead ...
Frontend::Customer::ModuleNotify ..
Frontend::Customer::ModuleRegistration ...
Frontend::Customer::Preferences ...
Frontend::Public ..

OTRS 3.1 - Admin Manual

viii

Frontend::Public::ModuleRegistration ..
Ticket ..

Core ...
Core::FulltextSearch ..
Core::LinkObject ..
Core::PostMaster ...
Core::Stats ..
Core::Ticket ...
Core::TicketACL ..
Core::TicketBulkAction ...
Core::TicketDynamicFieldDefault ..
Core::TicketWatcher ..
Frontend::Admin::ModuleRegistration ..
Frontend::Agent ...
Frontend::Agent::CustomerSearch ..
Frontend::Agent::Dashboard ...
Frontend::Agent::ModuleMetaHead ...
Frontend::Agent::ModuleNotify ..
Frontend::Agent::ModuleRegistration ..
Frontend::Agent::Preferences ...
Frontend::Agent::SearchRouter ..
Frontend::Agent::Ticket::ArticleAttachmentModule
Frontend::Agent::Ticket::ArticleComposeModule ..
Frontend::Agent::Ticket::ArticleViewModule ...
Frontend::Agent::Ticket::ArticleViewModulePre ..
Frontend::Agent::Ticket::MenuModule ...
Frontend::Agent::Ticket::MenuModulePre ..
Frontend::Agent::Ticket::ViewBounce ..
Frontend::Agent::Ticket::ViewBulk ...
Frontend::Agent::Ticket::ViewClose ...
Frontend::Agent::Ticket::ViewCompose ...
Frontend::Agent::Ticket::ViewCustomer ...
Frontend::Agent::Ticket::ViewEmailNew ..
Frontend::Agent::Ticket::ViewEscalation ..
Frontend::Agent::Ticket::ViewForward ...
Frontend::Agent::Ticket::ViewFreeText ..
Frontend::Agent::Ticket::ViewHistory ...
Frontend::Agent::Ticket::ViewMailbox ..
Frontend::Agent::Ticket::ViewMerge ..
Frontend::Agent::Ticket::ViewMove ...
Frontend::Agent::Ticket::ViewNote ..
Frontend::Agent::Ticket::ViewOwner ...
Frontend::Agent::Ticket::ViewPending ...
Frontend::Agent::Ticket::ViewPhoneInbound ..
Frontend::Agent::Ticket::ViewPhoneNew ...
Frontend::Agent::Ticket::ViewPhoneOutbound ...
Frontend::Agent::Ticket::ViewPrint ..
Frontend::Agent::Ticket::ViewPriority ...
Frontend::Agent::Ticket::ViewQueue ...
Frontend::Agent::Ticket::ViewResponsible ...
Frontend::Agent::Ticket::ViewSearch ...
Frontend::Agent::Ticket::ViewStatus ..
Frontend::Agent::Ticket::ViewZoom ...
Frontend::Agent::TicketOverview ..

OTRS 3.1 - Admin Manual

ix

Frontend::Agent::ToolBarModule ..
Frontend::Customer ...
Frontend::Customer::ModuleMetaHead ...
Frontend::Customer::ModuleRegistration ...
Frontend::Customer::Preferences ...
Frontend::Customer::Ticket::ViewNew ...
Frontend::Customer::Ticket::ViewPrint ...
Frontend::Customer::Ticket::ViewSearch ...
Frontend::Customer::Ticket::ViewZoom ...
Frontend::Queue::Preferences ..
Frontend::SLA::Preferences ...
Frontend::Service::Preferences ...

C. Credits ...
D. GNU Free Documentation License ...

0. PREAMBLE ..
1. APPLICABILITY AND DEFINITIONS ..
2. VERBATIM COPYING ...
3. COPYING IN QUANTITY ...
4. MODIFICATIONS ..
5. COMBINING DOCUMENTS ...
6. COLLECTIONS OF DOCUMENTS ...
7. AGGREGATION WITH INDEPENDENT WORKS ..
8. TRANSLATION ...
9. TERMINATION ..
10. FUTURE REVISIONS OF THIS LICENSE ...
How to use this License for your documents ...

x

List of Tables
3.1. Needed Perl modules for OTRS .. 19
3.2. Description of several cron job scripts. ... 29
5.1. Default groups available on a fresh OTRS installation ... 47
5.2. Rights associated with OTRS Groups ... 49
5.3. Events for Auto answers ... 67
5.4. Function of the different X-OTRS-headers .. 75
21.1. List of Init Scripts And Supported Operating Systems .. 199
22.1. The following fields will be added into the system: ... 206
A.1. Mailinglists ...

xi

List of Examples
5.1. Sort spam mails into a specific queue .. 77
7.1. .fetchmailrc .. 89
7.2. Example jobs for the filter module Kernel::System::PostMaster::Filter::Match 89
7.3. Example job for the filter module Kernel::System::PostMaster::Filter::CMD 90
11.1. Configuring a DB customer backend .. 97
11.2. Using company tickets with a DB backend .. 101
11.3. Configuring an LDAP customer backend ... 101
11.4. Using Company tickets with an LDAP backend ... 104
11.5. Using more than one customer backend with OTRS .. 104
11.6. Authenticate agents against a DB backend ... 107
11.7. Authenticate agents against an LDAP backend ... 108
11.8. Authenticate Agents using HTTPBasic .. 109
11.9. Authenticate Agents against a Radius backend ... 110
11.10. Customer user authentication against a DB backend .. 110
11.11. Customer user authentication against an LDAP backend 110
11.12. Customer user authentication with HTTPBasic .. 111
11.13. Customer user authentication against a Radius backend 112
18.1. ACL allowing movement into a queue of only those tickets with ticket priority 5. 131
18.2. ACL disabling the closing of tickets in the raw queue, and hiding the close button. 132
18.3. ACL removing always state closed successful. .. 133
18.4. ACL only showing Hardware services for tickets that are created in queues that
start with "HW". ... 133
18.5. Reference showing all possible important ACL settings. ... 133
19.1. Definition of a value series - one element ... 145
19.2. Definition of a value series - two elements ... 145
21.1. Example To Start The OTRS Scheduler Form An Init.d Script 199
21.2. Example To Start The OTRS Scheduler ... 200
21.3. Example To Force Stop The OTRS Scheduler .. 200
21.4. Example To Register The OTRS Scheduler Into the Widows SCM 201
21.5. Example To Start The OTRS Scheduler ... 201
21.6. Example To Force Stop The OTRS Scheduler .. 202
22.1. Activate Field1 in New Phone Ticket Screen. ..
22.2. Activate Field1 in New Phone Ticket Screen as mandatory.
22.3. Activate several fields in New Phone Ticket Screen. ...
22.4. Deactivate some fields in New Phone Ticket Screen. ..
22.5. Activate Field1 in Ticket Zoom Screen. ..
22.6. Activate Field1 in Ticket Overview Small Screens. ..
22.7. Activate Field1 in TicketCreate event. ..
22.8. Activate Field1 in the User preferences. ...

xii

Preface
This book is intended for use by OTRS administrators. It also serves as a good reference for
OTRS newbies.

The following chapters describe the installation, configuration and administration of the OTRS
software. The first third of the text describes key functionality of the software, while the remainder
serves as a reference to the full set of configurable parameters.

This book continues to be a work in progress, given a moving target on new releases. We
need your feedback in order to make this a high quality reference document, one that is usable,
accurate and complete. Please write to us if you find content missing in this book, if things are
not explained well enough or even if you see spelling mistakes, grammatical errors or typos. Any
kind of feedback is highly appreciated and should be made via our bug tracking system on http://
bugs.otrs.org [http://bugs.otrs.org]. Thanks in advance for your contributions!

http://bugs.otrs.org
http://bugs.otrs.org
http://bugs.otrs.org

1

Chapter 1. Trouble Ticket Systems -
The Basics
This chapter offers a brief introduction to trouble ticket systems, along with explaining the core concept of
a trouble ticket. A quick example demonstrates the advantages of using such a system.

What is a trouble ticket system, and why do
you need one?

The following example describes what a trouble ticket system is, and how you might benefit from
using such a system at your company.

Let's imagine that Max is a manufacturer of video recorders. Max receives many mails from
customers needing help with the devices. Some days, he is unable to respond promptly or even
acknowledge the mails. Some customers get impatient and write a second mail with the same
question. All mails containing support requests are stored in a single inbox file. The requests are
not sorted, and Max answers the mails using a regular email program.

Since Max cannot reply fast enough to all the messages, he is assisted by the developers Joe
and John in this. Joe and John use the same mail system, accessing the same inbox file. They
don't know that Max often gets two identical requests from a desperate customer. Sometimes
they both end up responding separately to the same request, with the customer receiving two
different answers. Further, Max is unaware of the details of their responses. He is also unaware
of the details of customer problems and their resolution, such as which problems occur with high
frequency, or how much time and money he has to spend on customer support.

At a meeting, a colleague tells Max about trouble ticket systems and how they can solve Max's
problems with customer support. After looking for information on the Internet, Max decides to
install the Open Ticket Request System (OTRS) on a computer that is accessible from the web by
both his customers and his employees. Now, the customer requests are no longer sent to Max's
private inbox but to the mail account that is used for OTRS. The ticket system is connected to
this mailbox and saves all requests in its database. For every new request, the system generates
an auto-answer and sends it to the customer so that the customer knows that his request has
arrived and will be answered soon. OTRS generates an explicit reference, the ticket number, for
every single request. Customers are now happy because they receive an acknowledgement to
their requests and it is not necessary to send a second message with the same question. Max,
John and Joe can now login into OTRS with a simple web browser and answer the requests.
Since the system locks a ticket that is answered, no message is edited twice.

Let's imagine that Mr. Smith makes a request to Max's company, and his message is processed
by OTRS. John gives a brief reply to his question. But Mr. Smith has a follow-up question, which
he posts via a reply to John's mail. Since John is busy, Max now answers Mr. Smith's message.
The history function of OTRS allows Max to see the full sequence of communications on this
request, and he responds with a more detailed reply. Mr. Smith does not know that multiple
service representatives were involved in resolving his request, and he is happy with the details
that arrived in Max's last reply.

Of course, this is only a short preview of the possibilities and features of trouble ticket systems.
But if your company has to attend to a high volume of customer requests through mails and phone
calls, and if different service representatives need to respond at different times, a ticket system

Trouble Ticket
Systems - The Basics

2

can be of great help. It can help streamline work flow processes, add efficiencies and improve
your overall productivity. A ticket system helps you to flexibly structure your Support or Help Desk
environment. Communications between customers and service staff become more transparent.
The net result is an increase in service effectiveness. And no doubt, satisifed customers will
translate into better financial results for your company.

What is a trouble ticket?
A trouble ticket is similar to a medical report created for a hospital patient. When a patient
first visits the hospital, a medical report is created to hold all necessary personal and medical
information on him. Over multiple visits, as he is attended to by the same or additional doctors,
the attending doctor updates the report by adding new information on the patient's health and the
ongoing treatment. This allows any other doctors or the nursing staff to get a complete picture
on the case at hand. When the patient recovers and leaves the hospital, all information from the
medical report is archived and the report is closed.

Trouble ticket systems such as OTRS handle trouble tickets like normal email. The messages are
saved in the system. When a customer sends a request, a new ticket is generated by the system
which is comparable to a new medical report being created. The response to this new ticket is
comparable to a doctor's entry in the medical report. A ticket is closed if an answer is sent back
to the customer, or if the ticket is separately closed by the system. If a customer responds again
on an already closed ticket, the ticket is reopened with the new information added. Every ticket
is stored and archived with complete information. Since tickets are handled like normal emails,
attachments and contextual annotations will be stored too with every email. Also, information
on relevant dates, employees involved, working time needed for ticket resolution etc. are also
saved. At any later stage, tickets can be sorted, and it is possible to search through and analyze
all information using different filtering mechanisms.

3

Chapter 2. OTRS Help Desk
This chapter describes the features of OTRS Help Desk (OTRS). You will find information about the
hardware and software requirements for OTRS. Additionally, this chapter tells you how to get commercial
support for OTRS, should you require it, and how to contact the community.

Basics
OTRS Help Desk (OTRS) is a web application which is installed on a web server and can be
used with a web browser.

OTRS is separated into several components. The basic component is the OTRS framework that
contains all central functions for the application and the ticket system. Via the web interface
of the OTRS framework, it is possible to install additional applications such as ITSM modules,
integrations with Network Monitoring solutions, a knowledge base (FAQ), et cetera.

Features
OTRS has many features. The following list gives an overview of the features included in the
central framework.

The features of OTRS

• Web interface:

• Easy and initial handling with any modern web browser, even with mobile phones or other
mobile computers.

• A web interface to administer the system via the web is available.

• A web interface to handle customer requests by employees/agents via the web is integrated.

• A web interface for customers is available to write new tickets, check the state and answer
old tickets and search through their own tickets.

• The web interface can be customized with different themes; own themes can be integrated.

• Support for many languages.

• The appearance of output templates can be customized (dtl).

• Mails from and into the system can contain multiple attachments.

• Mail interface:

• Support for mail attachments (MIME support).

• Automatic conversion of HTML into plain text messages (more security for dangerous
content and enables faster searching).

• Mail can be filtered with the X-OTRS headers of the system or via mail addresses, e.g. for
spam messages.

OTRS Help Desk

4

• PGP support, creation and import of own keys, signing and encrypting outgoing mail, signed
and encrypted messages can be displayed.

• Support for viewing and encrypting S/MIME messages, handling of S/MIME certificates.

• Auto answers for customers, configurable for every queue.

• Email notifications for agents about new tickets, follow-ups or unlocked tickets.

• Follow-ups by references or In-Reply-To header entries.

• Tickets:

• Expanded queue view, fast overview of new requests in a queue.

• Tickets can be locked.

• Creation of own auto answer templates.

• Creation of own auto responders, configurable for every queue.

• Ticket history, overview of all events for a ticket (changes of ticket states, replies, notes, etc.).

• Print view for tickets.

• Adding own (internal or external) notes to a ticket (text and attachments).

• Ticket zooming.

• Access control lists for tickets can be defined.

• Forwarding or bouncing tickets to other mail addresses.

• Moving tickets between queues.

• Changing/setting the priority of a ticket.

• The working time for every ticket can be counted.

• Up-coming tasks for a ticket can be defined (pending features).

• Bulk actions on tickets are possible.

• Automatic and timed actions on tickets are possible with the "GenericAgent".

• Full text search on all tickets is possible.

• System:

• OTRS runs on many operating systems (Linux, Solaris, AIX, FreeBSD, OpenBSD, Mac OS
10.x, Microsoft Windows).

• ASP support (active service providing).

• Linking several objects is possible, e.g. tickets and FAQ entries.

• Integration of external back-ends for the customer data, e.g. via AD, eDirectory or
OpenLDAP.

OTRS Help Desk

5

• Setting up an own ticket identifier, e.g. Call#, Ticket# or Request#.

• The integration of your own ticket counter is possible.

• Support of several database systems for the central OTRS back-end, e.g. MySQL,
PostgreSQL, Oracle, MSSQL).

• Framework to create stats.

• utf-8 support for the front- and back-end.

• Authentication for customers via database, LDAP, HTTPAuth or Radius.

• Support of user accounts, user groups and roles.

• Support of different access levels for several systems components or queues.

• Integration of standard answer texts.

• Support of sub queues.

• Different salutations and signatures can be defined for every queue.

• Email notifications for admins.

• Information on updates via mail or the web interface.

• Escalation for tickets.

• Support for different time zones.

• Simple integration of own add-ons or applications with the OTRS API.

• Simple creation of own front-ends, e.g. for X11, console.

New features of OTRS 3.1
1 GENERIC INTERFACE - A Web Service Framework

• GI is a flexible framework to allow web service interconnections of OTRS with third party
applications.

• OTRS can act in both ways - as a provider (server, requested from remote) or requester (client,
requesting remotely).

• Simple web service connections can be created without programming by configuring the
Generic Interface.

• Complex scenarios can be realized by plugging in custom OTRS extensions that add perl code
to the GI infrastructure on different architectural layers.

• Connectors expose parts of OTRS to Generic Interface web services.For example, a ticket
connector exposes the ticket create/update function, so that they can be used in a web service
regardless which network transport is used.

• A scheduler daemon process supports asynchronous event handling. This is useful to
asynchronously start web service requests from OTRS to another system, after the agents

OTRS Help Desk

6

request has been answered (e.g. when a ticket has been created). Otherwise, it might block
the response, resulting in increased response times for the agent.

With the Generic Interface new web services can be configured easily by using existing OTRS
modules, without additional code. They can be combined to create a new web service. When
configuring a new web service connection, the administrator has to add:

• A new web service in the admin GUI

• The basic meta data (Transport type (SOAP), URL etc.) and

• Existing operations (part of a connector) and specify for each operation how the data must be
mapped (inbound and outbound)

A Generic Interface Debugger will help the OTRS administrator to check how requests are
coming in and how they are handled through the different layers.

1.1 Current Features

• Network transports: SOAP/HTTP. Others like REST and JSON are scheduled to be added in
the future depending on customers demand.

• Configurable data mapping Graphical User Interface for key/value transformations with respect
to incoming and outgoing data.

• Graphical debugger to check the configuration and flow of information of configured web
services.

• A ticket connector allowing the use of OTRS as a web service for ticket handling.

1.2 Future Features

• Additional network transports (REST, JSON).

• The GI will replace the iPhoneHandle as the backend for mobile apps.

• Additional connectors will be added to provide more parts of OTRS for use with web services
(e.g. to allow the creation, update or deletion of agents, users, services or CIs).

2 DYNAMIC FIELDS
The DynamicFields Feature replaces the existing ticket and article FreeText and FreeTime fields
with a dynamic structure that will also allow to create custom forms in OTRS.

• An unlimited amount of fields can be configured using an own graphical user interface for
administration.

• The fields can have different types that can be used for both, tickets and articles. Available
by default are:

• Text

• Multiline text

• Checkbox

• Dropdown

OTRS Help Desk

7

• Multi-select

• Date

• Date and time

• New custom field types (e.g. custom field type dropdown with an external data source) can be
added with small effort as the fields are created in a modular, pluggable way.

• A future scenario is, that DynamicFields can be used for objects other than tickets or in custom
modules. For example, a custom module adding objects to handle "orders" in OTRS could use
the DynamicFields to attach properties/data to these orders.

• A database update script will transform historic FreeText fields and related configuration
settings into the new structure.

3 TICKET MANAGEMENT IMPROVEMENTS
3.1 Ticket creation improved

• Multiple email addresses can now be specified as 'To:', 'CC:' or 'BCC:' when creating a new
phone or email ticket.

3.2 Inbound phone call support

• Inbound phone calls can now be registered within an existing tickets (until now, only outbound
calls were registered).

3.3 Ticket overview preview improved

• It is now possible to exclude articles of certain sender types (e.g. articles from internal agents)
in the SysConfig from being displayed in the overview preview mode.

• A certain article type can be configured which will display articles of that type as expanded by
default when the view is accessed.

3.4 Ticket move improved

• The screen shown after moving a ticket is now configurable. Options are the ticket zoom view
(LastScreenView) or the ticket list (LastScreenOverview).

3.5 Bulk action improved

• With the new bulk action, outbound emails can now be sent from multiple tickets at the
same time. As tickets can have different queues, and these queues each can have different
templates, salutations and signatures, these are not used in the Bulk Action email.

• An additional bulk action allows configuring the ticket type for selected tickets.

3.6 Configurable Reject Sender Email Address

• The feature allows configuring an email address instead of the administrator address to reject
the creation of new tickets by email. This feature can be used in all cases where customers
are not allowed to create new tickets by email.

OTRS Help Desk

8

4 PROCESS AUTOMATION
4.1 Escalation events added

• OTRS will now create events for each of the available escalation types (response, update and
resolution). This allows performing actions (such as notifications) before the escalation occurs,
in the moment it occurs and in the moment that the escalation ends.

4.2 Notification mechanism improved
• A new generic agent notification module allows the OTRS administrator to define messages

that will be shown in the agent web front-end when agents log into the system.

4.3 Time calculation improved
• All kind of times are from now on calculated by and based on the application server only solving

the issues that were caused by variances between the clock times of application and data
base servers.

4.4 GenericAgent improved
• The GenericAgent can now filter for tickets change time.

• In addition, the GenericAgent can set the ticket responsible for matched tickets.

5 USER INTERFACE, RICH TEXT EDITOR, CHARSET
5.1 User interface performance improved

• The speed for rendering and article display was improved, thanks to Stelios Gikas
<stelios.gikas@noris.net>!

5.2 Rich Text Editor Update
• IOS5 support added.

• Block quotes can be left with the enter key.

• Update from CKEditor 3.4 to CKEditor 3.6, so improvements refer to the releases of CKEditor
3.5 [http://ckeditor.com/blog/CKEditor_3.5_released] and CKEditor 3.6 [http://ckeditor.com/
blog/CKEditor_3.6_released].

• IE9 support improved.

• Resizable dialogs.

5.3 Unicode Support - Non-UTF-8 Internal Encodings Dropped
• UTF-8 is now the only allowed internal charset of OTRS.

• All language files are now formatted in UTF-8, which simplifies their handling and future
improvements of the translation mechanism.

6 DATABASE DRIVER SUPPORT
6.1 PostgreSQL DRIVER compatibility improved

• PostgreSQL 9.1 support added.

http://ckeditor.com/blog/CKEditor_3.5_released
http://ckeditor.com/blog/CKEditor_3.5_released
http://ckeditor.com/blog/CKEditor_3.5_released
http://ckeditor.com/blog/CKEditor_3.6_released
http://ckeditor.com/blog/CKEditor_3.6_released
http://ckeditor.com/blog/CKEditor_3.6_released

OTRS Help Desk

9

• A new legacy driver is now available for PostgreSQL 8.1 or earlier versions.

6.2 MS SQL DRIVER compatibility improved

• The MS SQL driver now stores binary data in VARBINARY rather than deprecated type TEXT
as well as NVARCHAR to store text strings rather than VARCHAR (for improved Unicode
support).

7 MAIL INTEGRATION

7.1 Mail handling improved

• When connecting to IMAP mail accounts, it is now possible to handle emails from a specific
email folder, other than the INBOX folder.

• OTRS can now also connect to IMAP servers using Transport Layer Security (TLS), useful for
modern restricted environments.

Top new features of OTRS 3.0
Context

• User Centered redesign of the Graphical User Interface which results in a dramatic shift from
a comprehensive but static to a more powerful and dynamic application using state-of-the art
technologies like Ajax, xHTML and optimized CSS.

New Ticket and Article Indicator

• This new feature has been implemented on both ticket and article level. It allows an agent at
a glance to check for any updates within a ticket or on the article level to check for new and
unread articles. You benefit from increased transparency and decreased response times.

Optimized Fulltext Search

• The new search feature allows you to flexibly customize the way you browse the information
base. Options the new search feature provides range from single search-string searches to
complex multi-string boolean search operations including various operators. You benefit from
fully customizable searches according to your needs.

New Ticket Zoom View

• The redesign based on Ajax technology allows agents to display complex and linked
information structures in real-time while keeping the agents' current working environment. The
agent will benefit from increased orientation and increased workflow efficiency.

Global Ticket Overviews

• Well known from OTRS 2.4 the global ticket overviews have been optimized to achieve
increased inter- activity. Depending on the use case and preferences of your agents they can
easily change the ticket overviews layout according to their special needs. Options are small,
medium and large, each providing a different degree of information details.

OTRS Help Desk

10

Accessibility

• The redesign includes common accessibility standards WCAG and WAI-ARIA which also
allows disabled users to better interact with OTRS Help Desk. The US Rehabilitation Acts
Section 508 has been fulfilled.

New Customer Interface

• The customer web front-end can be integrated to your organizations intranet and is fully
integrated into the redesigned help desk system.

Archive Feature

• OTRS 3.0 now offers a new archiving feature. With a separated archive you'll benefit from a
reduced time spent for searches and increased display of results.

New features of OTRS 2.4
Licensing changed to AGPL Version 3

• Why AGPL instead of GPL? - AGPL and GPL are identical, with one exception: For software
used in an SaaS environment Copyleft is effective in AGPL - which is not the case when
using GPL. Keeping in mind the growing world of SaaS, ((otrs)) wants to ensure that future
developments continue to return to the OTRS community. This is the reason for the switch
to AGPL.

Why v3 instead of v2? - GPL v2 is getting older and has, especially in the USA, various legal
uncertainties. In the opinion of ((otrs)) GPL v3 is keeping the spirit of GPL v2, and at the
same time has been tailored to new needs. ((otrs)) views GPLv3, more specifically AGPLv3,
as being the best balanced Copyleft Open Source License available today, offering Protection
for copyright owners and users and providing the best security under the law.

New Management Dashboard

• The need for a system-spanning, next to real-time, and personalized presentation of useful
information led to an integrated Management Dashboard. It is possible to create plug-ins to
display content from individual extensions alongside the standard content. Standard plug-ins
are:

• Ticket volume (new & open) from the last 24h, 48h and 72h

• Calendar including an overview of upcoming events (escalations, auto-unlocks, etc.)

• System-wide overview of ticket distribution within the queues

• First Response Time/Solution Time of Queues

• Integration of RSS

New Standard Reports

• The new reports provided with OTRS 2.4 are:

• Created Tickets

OTRS Help Desk

11

• Closed Tickets

• SLA Analysis

• Required working time per customer / per queue

• Solution time analysis per customer / per queue

• Answer time analysis per customer / per queue

New Master/Slave Ticket Feature

• With the Master/Slave Ticket, it is possible to link multiple tickets of a similar nature, and handle
them collectively. As soon as the problem is solved, only the master ticket must be closed. All
other tickets will be closed automatically, and the solution text for the master ticket will be sent
to all customers of slave tickets.

A new link type 'Slave' will be available. All tickets with this Type of link will inherit the following
actions from their Master ticket:

• Status change

• Email answers

• Change in FreeText fields

• Notes

• Pending time changes

• Priority changes

• Owner changes

• Responsibility changes

New Rich-Text/HTML E-Mail Support (WYSIWYG)

• With this feature, it is now possible to write e-mails, notes, and notifications in rich text format
(HTML format). Using a WYSIWYG editor (What You See Is What You Get), it is possible to
comfortably write using formatted text and even include in-line pictures.

New Out-Of-Office Feature

• With this new feature it is possible for all users to activate "out-of-office" to notify colleagues
and OTRS of the period of their absence. The out-of-office feature is active for a time frame
set by the user. Activation of this feature has the following effects:

In the lists in which an agent can be selected as owner or responsible (i.e. Ticket creation or
changing ownership), the period of absence and the time till return will be shown behind the
user's name. This will help making the absence of the user more transparent.

If an agent receives a follow-up during a period of absence, the ticket is automatically unlocked
and a notification is sent to all agents in the queue. This allows immediate reaction to the
customer follow-up by another service employee.

OTRS Help Desk

12

New Ticket Overviews and global Bulk Action
• Flexibility of presentation within the ticket overview is a must. Based on the "S/M/L" (Small/

Medium/Large) Ticket View every agent has the possibility to change the view for each type
of overview (Queue View, Status View, etc) on-the-fly with a simple mouse click on the
appropriate icon. This allows for the highest possible level of individualization and adjustment
to any operational situation.

Additionally, decentralization of the Bulk Action feature integrated the Bulk Action in all ticket
overviews (Bulk Action allows processing of multiple tickets at a time).

Postmaster Filter recognizes Follow-Ups to internal forwarded messages
• Currently, e-mail replies to forwarded articles arrive in OTRS as email-external. The problem is

that the answers to these forwarded articles can be seen by the customer in the web- interface.
Although it is possible to classify e-mails of an entire domain as email-internal, this only shifts
the problem. Also, such step makes it impossible to properly service customers in the domain,
as the customer would not be able to track tickets in the customer web-interface any more.
With this new feature, e-mail replies can be traced back, and email- internal or email-external
will be set based upon the original Forward-Article type.

Configurable event based notifications
• Until now, a very inflexible notification could be sent to an agents and customers, for example

Agent: New Ticket or Customer: Status Change. In order to make the notification system more
flexible, a complete overhaul was performed on the messaging mechanism. The new system
allows messaging to agents, customers, or a dedicated email address, based on the event
taking place.

With this, it is now possible to just inform the customer when the ticket has been closed. Or, for
example, when a VIP customer creates a ticket, a message can be sent to a specific address.
Events (i.e. TicketCreate, TicketStateUpdate, TicketPriorityUpdate, ArticleCreate), and all
known message variables (i.e. <OTRS_TICKET_TicketNumber> <OTRS_TICKET_Priority>),
are freely selectable for creating triggered messages via the web interface.

READ-ONLY Permissions and Notifications with watched Tickets
• In the current release of OTRS it is possible for a user to maintain a Watched Tickets List.

This feature is dealing with tickets marked as "subscribed" by a user. It has the advantage that
users no longer lose track of tickets marked as "sub- scribed", and are able to view them on
an individual list. The "Read-Only" Feature - Up to now, tickets marked as "sub- scribed" were
shown in a list, however, the agent could only actually view them if they were in a queue for
which the agent had read permissions. With the "Read-Only" Feature, agents subscribed to a
ticket always have read permissions on the ticket, even if the ticket is moved to a queue where
the agent has no permissions. "Notify" Feature - Via a personalized setting, every agent can
define whether or not to receive notifications about tickets, just as the owner and responsible
of a ticket would receive. This allows for active tracking of watched tickets.

Secure SMTP
• OTRS can receive and send mails in multiple ways. All currently available methods for

receiving emails have been implemented within OTRS 2.3 (POP3,POP3S,IMAP,IMAPS). Until
now, there were two options for sending emails: using a local MTA (Sendmail, Postfix, etc.)
or per SMTP. In OTRS 2.4.x, SMTPS (Secure SMTP) has been implemented in order to keep
up to the growing security standards.

OTRS Help Desk

13

Hardware and software requirements
OTRS can be installed on many different operating systems. OTRS can run on linux and on other
unix derivates (e.g. OpenBSD or FreeBSD). You can also deploy it on Microsoft Windows. OTRS
does not have excessive hardware requirements. We recommend using a machine with at least
a 2 GHz Xeon or comparable CPU, 2 GB RAM and a 160 GB hard drive for a small setup.

To run OTRS you'll also need to use a web server and a database server. Apart from that, on
the OTRS machine, you should install perl and/or install some additional perl modules. The web
server and Perl have to be installed on the same machine as OTRS. The database back-end
can be installed locally or on another host.

For the web server we recommend using the Apache HTTP Server, because its module mod_perl
improves greatly the performance of OTRS. Apart from that, OTRS should run on any web server
that can execute Perl scripts.

You can deploy OTRS on different databases. You can choose between MySQL, PostgreSQL,
Oracle, or Microsoft SQL Server. If you use MySQL you have the advantage that the database
and some system settings can be configured during the installation, through a web front-end.

For Perl, we recommend using at least version 5.8.8. You need some additional modules which
can be installed either with the Perl shell and CPAN or via the package manager of your operating
system (rpm, yast, apt-get).

Software requirements

Perl support
• Perl 5.8.8 or higher

Web server support
• Apache2 + mod_perl2 or higher (recommended, mod_perl is really fast!)

• Webserver with CGI support (CGI is not recommended)

• Microsoft Internet Information Server (IIS) 6 or higher

Database support
• MySQL 4.1 or higher

• PostgreSQL 7.0 or higher (8.2 or higher recommended)

• Oracle 10g or higher

• Microsoft SQL Server 2005 or higher

The section in the manual about installation of Perl modules describes in more detail how you
can set up those which are needed for OTRS.

If you install a binary package of OTRS, which was built for your operating system (rpm, Windows-
Installer), either the package contains all Perl modules needed or the package manager of your
system should take care of the dependencies of the Perl modules needed.

OTRS Help Desk

14

Web browser support
For the Agent interface of OTRS, you'll be OK if you use a modern browser with JavaScript
support enabled. We support the following browsers:

• Internet Explorer 8.0 or higher

• Mozilla Firefox 3.6 or higher

• Google Chrome

• Opera 10 or higher

• Safari 4 or higher

We recommend to always use the latest version of your browser, because it has the best
JavaScript and rendering performance. Dramatical performance varieties between the used
browsers can occur with big data or big systems. We are happy to consult you on that matter.

For the OTRS Customer Interface, in addition to the browsers listed above, you can also use
Internet Explorer versions 6 or 7, and we do not require JavaScript either.

Community
OTRS has a large user community. Users and developers discuss about OTRS and interchange
information on related issues through the mailing-lists. You can use the mailing lists to discuss
installation, configuration, usage, localization and development of OTRS. You can report
software bugs in our bug tracking system.

The homepage of the OTRS community is: http://www.otrs.com/open-source/.

Commercial Support and Services for OTRS
Commercial support for OTRS is also available. You can find the available options on the website
of OTRS Group, the company behind OTRS: http://www.otrs.com/.

OTRS Group provides subscription support services, customization, consulting and training
for OTRS Help Desk [http://www.otrs.com/products/otrs-help-desk/] and OTRS ITSM [http://
www.otrs.com/en/products/otrs-itsm/]. It also provides Best Practice Product Editions [http://
www.otrs.com/solutions/]. With these Editions, OTRS Group helps organizations to design,
deploy and optimize OTRS for each unique environment. Additionally, OTRS Group provides
hosted versions including OTRS OnDemand [http://www.otrs.com/en/solutions/ondemand/] and
Managed OTRS [http://www.otrs.com/en/solutions/managed-otrs/].

You can find more detailed information about OTRS Group on http://www.otrs.com and you can
contact us via email on sales at otrs.com [mailto:sales@otrs.com].

http://www.otrs.com/open-source/
http://www.otrs.com/
http://www.otrs.com/products/otrs-help-desk/
http://www.otrs.com/products/otrs-help-desk/
http://www.otrs.com/en/products/otrs-itsm/
http://www.otrs.com/en/products/otrs-itsm/
http://www.otrs.com/en/products/otrs-itsm/
http://www.otrs.com/solutions/
http://www.otrs.com/solutions/
http://www.otrs.com/solutions/
http://www.otrs.com/en/solutions/ondemand/
http://www.otrs.com/en/solutions/ondemand/
http://www.otrs.com/en/solutions/managed-otrs/
http://www.otrs.com/en/solutions/managed-otrs/
http://www.otrs.com
mailto:sales@otrs.com
mailto:sales@otrs.com

15

Chapter 3. Installation
This chapter describes the installation and basic configuration of the central OTRS framework. It covers
information on installing OTRS from source, or with a binary package such as an RPM or a Windows
exectuable.

Topics covered here include configuration of the web and database servers, the interface between OTRS
and the database, the installation of additional Perl modules, setting proper access rights for OTRS, setting
up the cron jobs for OTRS, and some basic settings in the OTRS configuration files.

Follow the detailed steps in this chapter to install OTRS on your server. You can then use its web interface
to login and administer the system.

The simple way - Installation of pre-built
packages

You should use pre-built packages to install OTRS, since it is the simplest and most convenient
method. You can find them in the download area at http://www.otrs.org [http://www.otrs.org]
. The following sections describe the installation of OTRS with a pre-built or binary package
on SUSE, Debian and Microsoft Windows systems. Only if you are unable to use the pre-built
packages for some reason should you follow the manual process.

Installing the RPM on a SUSE Linux server
This section demonstrates the installation of a pre-built RPM package on a SUSE Linux
distro. We have tested against all recent SLES and openSUSE versions. Before you start
the installation, please have a look at http://www.otrs.org/downloads [http://www.otrs.org/
downloads] and check if a newer OTRS RPM package is available. Always use the latest RPM
package.

Install OTRS with yast (yast2) or via the command line and rpm. OTRS needs some Perl modules
which are not installed on a SUSE system by default, and so we recommend using yast, since
it addresses the package dependencies automatically.

If you decide to install OTRS via the command line and rpm, first you have to manually install
the needed Perl modules. Assuming you saved the file otrs.rpm in the directory /tmp, you can
execute the command specified in the following script to install OTRS.

linux:~ # rpm -i /tmp/otrs-xxx.rpm
otrs
 ##
Check OTRS user (/etc/passwd)... otrs exists.

Next steps:

[SuSEconfig]
 Execute 'SuSEconfig' to configure the web server.

[start Apache and MySQL]
 Execute 'rcapache restart' and 'rcmysql start' in case they don't
 run.

http://www.otrs.org
http://www.otrs.org
http://www.otrs.org/downloads
http://www.otrs.org/downloads
http://www.otrs.org/downloads

Installation

16

[install the OTRS database]
 Use a web browser and open this link:
 http://localhost/otrs/installer.pl

[OTRS services]
 Start OTRS 'rcotrs start-force' (rcotrs {start|stop|status|restart|
start-force|stop-force}).

Have fun!

 Your OTRS Team
 http://otrs.org/

linux:~ #

Script: Command to install OTRS.

After the installation of the OTRS RPM package, you have to run SuSEconfig, as shown in the
following script.

linux:~ # SuSEconfig
Starting SuSEconfig, the SuSE Configuration Tool...
Running in full featured mode.
Reading /etc/sysconfig and updating the system...
Executing /sbin/conf.d/SuSEconfig.aaa_at_first...
Executing /sbin/conf.d/SuSEconfig.apache...
Including /opt/otrs/scripts/apache-httpd.include.conf
Executing /sbin/conf.d/SuSEconfig.bootsplash...
Executing /sbin/conf.d/SuSEconfig.doublecheck...
Executing /sbin/conf.d/SuSEconfig.guile...
Executing /sbin/conf.d/SuSEconfig.hostname...
Executing /sbin/conf.d/SuSEconfig.ispell...
Executing /sbin/conf.d/SuSEconfig.perl...
Executing /sbin/conf.d/SuSEconfig.permissions...
Executing /sbin/conf.d/SuSEconfig.postfix...
Setting up postfix local as MDA...
Setting SPAM protection to "off"...
Executing /sbin/conf.d/SuSEconfig.profiles...
Finished.
linux:~ #

Script: Running the SuSEconfig command.

The OTRS installation is done. Restart your web server to load the OTRS specific changes in
its configuration, as shown in the script below.

linux:~ # rcapache restart
Shutting down httpd done
Starting httpd [PERL] done
linux:~ #

Script: Restarting the web server.

Installation

17

The next step is to setup the OTRS database, as described at section 3.2.4.

Installing OTRS on a CentOS system
On the OTRS Wiki you can find detailed instructions for setting up OTRS on a CentOS system.
Please note that these instructions will also apply to Red Hat Linux systems since they use the
same source: http://wiki.otrs.org/index.php?title=Installation_of_OTRS_3.0b1_on_CentOS_5.5
[http://wiki.otrs.org/index.php?title=Installation_of_OTRS_3.0b1_on_CentOS_5.5] .

Installing OTRS on a Debian system
On the OTRS Wiki you can find detailed instructions for setting up OTRS on a
Debian system: http://wiki.otrs.org/index.php?title=Installation_on_Debian_5.04_lenny [http://
wiki.otrs.org/index.php?title=Installation_on_Debian_5.04_lenny] .

Installing OTRS on a Ubuntu system
On the OTRS Wiki you can find detailed instructions for setting up OTRS on an Ubuntu
system: http://wiki.otrs.org/index.php?title=Installation_on_Ubuntu_Lucid_Lynx_(10.4) [http://
wiki.otrs.org/index.php?title=Installation_on_Ubuntu_Lucid_Lynx_(10.4)] .

Installing OTRS on Microsoft Windows systems
Installing OTRS on a Microsoft Windows system is very easy. Download the latest installer for
Win32 from http://www.otrs.org/downloads/ [http://www.otrs.org/downloads/] and save the file
to your local file system. Then simply double-click on the file to execute the installer, and follow
the few installation steps to setup the system. After that you will be able to login as OTRS
administrator and configure the system according to your needs. To log in as OTRS administrator
use the username 'root@localhost' and the default password 'root'.

Warning
Please change the password for the 'root@localhost' account as soon as possible.

Important
The Win32 installer for OTRS contains all needed components for OTRS, i.e. the Apache
web server, the MySQL database server, Perl (with all needed modules) and Cron for
Windows. For that reason you should only install OTRS on Windows systems that don't
already have an installation of Apache or another web server, or MySQL.

Installation from source (Linux, Unix)
Preparing the installation from source

If you want to install OTRS from source, first download the source archive as .tar.gz, .tar.bz2,
or .zip file from http://www.otrs.org/downloads/ [http://www.otrs.org/downloads/]

Unpack the archive (for example, using tar) into the directory /opt, and rename the directory
from otrs-3.1.x to otrs (see Script below).

http://wiki.otrs.org/index.php?title=Installation_of_OTRS_3.0b1_on_CentOS_5.5
http://wiki.otrs.org/index.php?title=Installation_of_OTRS_3.0b1_on_CentOS_5.5
http://wiki.otrs.org/index.php?title=Installation_on_Debian_5.04_lenny
http://wiki.otrs.org/index.php?title=Installation_on_Debian_5.04_lenny
http://wiki.otrs.org/index.php?title=Installation_on_Debian_5.04_lenny
http://wiki.otrs.org/index.php?title=Installation_on_Ubuntu_Lucid_Lynx_(10.4)
http://wiki.otrs.org/index.php?title=Installation_on_Ubuntu_Lucid_Lynx_(10.4)
http://wiki.otrs.org/index.php?title=Installation_on_Ubuntu_Lucid_Lynx_(10.4)
http://www.otrs.org/downloads/
http://www.otrs.org/downloads/
http://www.otrs.org/downloads/
http://www.otrs.org/downloads/

Installation

18

linux:/opt# tar xf /tmp/otrs-3.1.tar.gz
linux:/opt# mv otrs-3.1 otrs
linux:/opt# ls
otrs
linux:/opt#

Script: First steps to install OTRS.

OTRS should NOT be run with root rights. You should add a new user for OTRS as the next step.
The home directory of this new user should be /opt/otrs. If your web server is not running
with the same user rights as the new 'otrs' user, which is the case on most systems, you have
to add the new 'otrs' user to the group of the web server user (see Script below).

linux:/opt# useradd -r -d /opt/otrs/ -c 'OTRS user' otrs
linux:/opt# usermod -G nogroup otrs
linux:/opt#

Script: Adding a new user 'otrs', and adding it to a group.

Next, you have to copy some sample configuration files. The system will later use the copied
files. The files are located in /opt/otrs/Kernel and /opt/otrs/Kernel/Config and have
the suffix .dist (see Script below).

linux:/opt# cd otrs/Kernel/
linux:/opt/otrs/Kernel# cp Config.pm.dist Config.pm
linux:/opt/otrs/Kernel# cd Config
linux:/opt/otrs/Kernel/Config# cp GenericAgent.pm.dist GenericAgent.pm

Script: Copying some sample files.

The last step to prepare the installation of OTRS is to set the proper access rights for the files.
You can use the script otrs.SetPermissions.pl, which is located in the bin directory, in the
home directory of the 'otrs' user. You can execute the script with the following parameters:

otrs.SetPermissions.pl { Home directory of the OTRS user } { --otrs-user= OTRS
user } { --web-user= Web server user } [--otrs-group= Group of the OTRS user] [--
web-group= Group of the web server user]

If your web server is running with the same user rights as user 'otrs', the command to set the
proper access rights is otrs.SetPermissions.pl /opt/otrs --otrs-user=otrs --web-user=otrs.
On SUSE systems the web server is running with the user rights of 'wwwrun'. On Debian-based
systems this is 'www-data'. You would use the command otrs.SetPermissions.pl /opt/otrs
--otrs-user=otrs --web-user=wwwrun --otrs-group=nogroup --web-group=www to set the
proper access rights.

Installation of Perl modules
OTRS needs some additional Perl modules, as described in Table 3-1. If you install OTRS from
source, you will have to install these modules manually. This can be done either with the package
manager of your Linux distribution (yast, apt-get) or, as described in this section, through the Perl
shell and CPAN. If you're using ActiveState Perl, for instance on Windows, you could use PPM,
the built-in Perl Package Manager. We recommend using your package manager if possible.

Installation

19

Table 3.1. Needed Perl modules for OTRS

Name Description
DBI Establishes a connection to the database back-

end.
DBD::mysql Contains special functions to connect to the

MySQL database back-end (only required if
MySQL is used).

DBD::pg Contains special functions to connect to the
PostgreSQL database back-end (only required
if PostgreSQL is used).

Digest::MD5 Allows the use of the md5 algorithm.
CSS::Minifier Minifies a CSS file and writes the output directly

to another file.
Crypt::PasswdMD5 Provides interoperable MD5-based crypt

functions.
MIME::Base64 Encodes / decodes Base64 strings, e.g. for mail

attachments.
JavaScript:Minifier Minifies a JavaScript file and writes the output

directly to another file.
Net::DNS Perl interface to the domain name system.
LWP::UserAgent Processes HTTP requests.
Net::LDAP Perl interface to a LDAP directory (only

required if an LDAP back-end is used).
GD Interface to the GD graphics library (only

required if the OTRS stats module is used).
GD::Text, GD::Graph, GD::Graph::lines,
GD::Text::Align

Some more text and graphic tools for the GD
graphics library (only required if the OTRS stats
module is used).

PDF::API2, Compress::Zlib Needed to generate the PDF output for reports,
search results and for the ticket print view.

You can verify which modules you need to install with otrs.CheckModules.pl. This script is
located in the bin directory, in the home directory of the 'otrs' user (see Script below).

Please note that some modules are optional.

linux:~# cd /opt/otrs/bin/
linux:/opt/otrs/bin# ./otrs.CheckModules.pl
 o CGI............................ok (v3.49)
 o Crypt::PasswdMD5...............ok (v1.3)
 o CSS::Minifier..................ok (v0.01)
 o Date::Format...................ok (v2.24)
 o Date::Pcalc....................ok (v1.2)
 o DBI............................ok (v1.609)
 o DBD::mysql.....................ok (v4.013)
 o Digest::MD5....................ok (v2.36_01)
 o Encode::HanExtra...............ok (v0.23)

Installation

20

 o GD.............................ok (v2.44)
 o GD::Text....................ok (v0.86)
 o GD::Graph...................ok (v1.44)
 o GD::Graph::lines............ok (v1.15)
 o GD::Text::Align.............ok (v1.18)
 o IO::Scalar.....................ok (v2.110)
 o IO::Wrap.......................ok (v2.110)
 o JavaScript::Minifier...........ok (v1.05)
 o JSON...........................ok (v2.21)
 o JSON::PP....................ok (v2.27003)
 o JSON::XS....................Not installed! (Optional - Install
 it for faster AJAX/JavaScript handling.)
 o LWP::UserAgent.................ok (v5.829)
 o Mail::Internet.................ok (v2.06)
 o Mail::POP3Client...............ok (v2.18)
 o IO::Socket::SSL.............ok (v1.31)
 o MIME::Base64...................ok (v3.07_01)
 o MIME::Tools....................ok (v5.428)
 o Net::DNS.......................ok (v0.65)
 o Net::POP3......................ok (v2.29)
 o Net::IMAP::Simple..............ok (v1.1916)
 o Net::IMAP::Simple::SSL......ok (v1.3)
 o Net::SMTP......................ok (v2.31)
 o Authen::SASL................ok (v2.15)
 o Net::SMTP::SSL..............ok (v1.01)
 o Net::LDAP......................ok (v0.4001)
 o PDF::API2......................ok (v0.73)
 o Compress::Zlib..............ok (v2.008)
 o SOAP::Lite.....................ok (v0.712)
 o Text::CSV......................ok (v1.18)
 o Text::CSV_PP................ok (v1.26)
 o Text::CSV_XS................Not installed! (Optional -
 Optional, install it for faster CSV handling.)
 o XML::Parser....................ok (v2.36)
linux:/opt/otrs/bin#

Script: Checking needed modules.

You should strive to install the missing modules from your Linux distribution's package
management system. In that way, the packages will be automatically updated when new versions
are available or when security issues are found. Please refer to your distribution's documentation
on how to install additional packages. If the (correct version of) the module is not available
from the package repositories, you can also install from CPAN, the Comprehensive Perl Archive
Network.

To install one of the modules from above via CPAN, you have to execute the command perl -
e shell -MCPAN. The Perl shell will be started in interactive mode and the CPAN module will
be loaded. If CPAN is already configured, you can install the modules with the command install
followed by the name of the module. CPAN takes care of the dependencies of a module to other
Perl modules and will let you know if other modules are needed.

Execute also the commands perl -cw bin/cgi-bin/index.pl perl -cw bin/cgi-bin/customer.pl
and perl -cw bin/otrs.PostMaster.pl after changing into the directory /opt/otrs. If the output
of both commands is "syntax OK", your Perl is properly set up (see Script below).

Installation

21

linux:~# cd /opt/otrs
linux:/opt/otrs# perl -cw bin/cgi-bin/index.pl
cgi-bin/installer.pl syntax OK
linux:/opt/otrs# perl -cw bin/cgi-bin/customer.pl
cgi-bin/customer.pl syntax OK
linux:/opt/otrs# perl -cw bin/otrs.PostMaster.pl
bin/otrs.PostMaster.pl syntax OK
linux:/opt/otrs#

Script: Syntax check.

Configuring the Apache web server
This section describes the basic configuration of the Apache web server with mod_cgi for OTRS.
The web server should be able to execute CGI scripts. OTRS won't work if the Perl scripts cannot
be parsed. Check the configuration files of your web server, and search for the line that loads the
CGI module. If you see something like the following, the CGI module should already be in use.

LoadModule cgi_module /usr/lib/apache2/modules/mod_cgi.so

To access the web interface of OTRS conveniently via a short address, Alias and ScriptAlias
entries are needed. Most Apache installations have a conf.d directory included. On Linux
systems you can find this directory very often under /etc/apache or /etc/apache2. Log
in as root, change to the conf.d directory and copy the appropriate template in /opt/
otrs/scripts/apache2-httpd.include.conf to a file called otrs.conf in the Apache
configuration directory.

Restart your web server to load the new configuration settings. On most systems you can start/
restart your web server with the command /etc/init.d/apache2 restart (see Script below).

linux:/etc/apache2/conf.d# /etc/init.d/apache2 restart
Forcing reload of web server: Apache2.
linux:/etc/apache2/conf.d#

Script: Restarting the web server.

Now your web server should be configured for OTRS.

If you choose to increase performance and you can install mod_perl, then you can leave mod_cgi
off, and configure the Apache web server for use with mod_perl, in the following manner:

Please ensure that mod_perl is installed and loaded, in order to take advantage of this feature.
Due to the nature of the start-up script, your server will not fail to start if mod_perl is not properly
loaded or compiled in your apache web server, unless mod_cgi is also on. Technically speaking
you can leave mod_cgi on as well, but you should not.

Search your /etc/apache* directory for mod_perl.so (see Script below) to see if the module is
already loaded.

 #:/ grep -Rn mod_perl.so /etc/apache*

Script: Searching for mod_perl.

When you use the appropriate start script listed above and the module is loaded, the script (when
commented in) /opt/otrs/scripts/apache2-perl-startup.pl can be used to load the perl modules into
memory one time, saving on load times and increasing performance.

Installation

22

Configuring the database
The simple way - Using the web installer (works only with MySQL)

If you use MySQL as the database back-end, you can use the OTRS web installer: http://
localhost/otrs/installer.pl [http://localhost/otrs/installer.pl] .

When the web installer starts, please follow the next steps to setup your system:

1. Check out the information about the OTRS offices and click on next to continue (see Figure
below).

Figure: Welcome screen.

2. Read the GNU Affero General Public License (see Figure below) and accept it, by clicking the
corresponding button at the bottom of the page.

Figure: GNU Affero General Public License.

http://localhost/otrs/installer.pl
http://localhost/otrs/installer.pl
http://localhost/otrs/installer.pl

Installation

23

3. Provide the username and password of the administrator, the DNS name of the computer
which hosts OTRS and the type of database system to be used. After that, check the settings
(see Figure below).

Figure: Database initial settings.

You will be notified if the check was successful. Press OK to continue (see Figure below).

Figure: Notification for successful check.

4. Create a new database user, choose a name for the database and click on 'Next' (see Figure
below).

Warning
It is never a good idea to use default passwords. Please change the default password
for the OTRS database!

Installation

24

Figure: Database settings.

If the database and its user were successfully created, you will get a setup notification, as shown
in Figure. Click 'Next' to go to the next screen.

Figure: Notification indicating successful database setup.

5. Provide all the required system settings and click on 'Next' (see Figure below).

Installation

25

Figure: System settings.

6. If you want, you can provide the needed data to configure your inbound and outbound mail,
or skip this step by pressing the right button at the bottom of the screen (see Figure below).

Figure: Mail configuration.

7. Restart the OTRS service now to use the new configuration settings as shown in the script
below.

linux:~ # rcotrs restart-force
Shutting down OTRS
 Disable /opt/otrs/bin/otrs.PostMaster.pl ... done.
no crontab for otrs
 Shutting down cronjobs ... failed!
Shutting down OTRS (completely)
 Shutting down Apache ... done.

Installation

26

 Shutting down MySQL ... done.

 done
Starting OTRS (completely)
 Starting Apache ... done.
 Starting MySQL ... done.
Starting OTRS
 Checking Apache ... done.
 Checking MySQL ... done.
 Checking database connect... (It looks Ok!).
 Enable /opt/otrs/bin/otrs.PostMaster.pl ... done.
 Checking otrs spool dir... done.
 Creating cronjobs (source /opt/otrs/var/cron/*) ... done.

 -->> http://linux.example.com/otrs/index.pl <<--

 done

 done
linux:~ #

Script: Restarting the OTRS service.

Congratulations! Now the installation of OTRS is finished and you should be able to work with
the system (see Figure below). To log into the web interface of OTRS, use the address http://
localhost/otrs/index.pl [http://localhost/otrs/index.pl] from your web browser. Log in as OTRS
administrator, using the username 'root@localhost' and the password 'root'. After that you can
configure the system for your needs.

Warning
Please change the password for the 'root@localhost' account as soon as possible.

Figure: Final steps to install OTRS.

http://localhost/otrs/index.pl
http://localhost/otrs/index.pl
http://localhost/otrs/index.pl

Installation

27

Installing the OTRS database manually
If you can't use the web installer to setup the OTRS database, you have to set it up manually.
Scripts with the SQL statements to create and configure the database are located in scripts/
database, in the home directory of the 'otrs' user (see Script below).

linux:~# cd /opt/otrs/scripts/database/
linux:/opt/otrs/scripts/database# ls
otrs-initial_insert.db2.sql otrs-schema.mysql.sql
otrs-schema.oracle.sql
otrs-initial_insert.mssql.sql otrs-schema-post.db2.sql
otrs-initial_insert.mysql.sql otrs-schema.postgresql.sql
otrs-initial_insert.oracle.sql
otrs-initial_insert.postgresql.sql otrs-schema-post.mssql.sql
otrs-initial_insert.xml otrs-schema-post.mysql.sql
otrs-schema.db2.sql otrs-schema-post.oracle.sql
 otrs-schema-post.postgresql.sql
otrs-schema.mssql.sql otrs-schema.xml
linux:/opt/otrs/scripts/database#

Script: Files needed to create and configure the database.

To setup the database for the different database back-ends, the .sql files must be processed
in a specific order.

Create the OTRS database manually step by step
1. Creating the DB: Create the database that you want to use for OTRS, with your database

client or your database interface.

2. Creating the tables: With the otrs-schema.DatabaseType.sql files (e.g. otrs-
schema.oracle.sql, otrs-schema.postgresql.sql) you can create the tables in your
OTRS database.

3. Inserting the initial system data: OTRS needs some initial system data to work properly
(e.g. the different ticket states, ticket and notification types). Depending on the type
of your database, use one of the files otrs-initial_insert.mysql.sql, otrs-
initial_insert.oracle.sql, otrs-initial_insert.postgresql.sql or otrs-
initial_insert.mssql.sql .

4. Creating references between tables: The last step is to create the references
between the different tables in the OTRS database. Use the otrs-schema-
post.DatabaseType.sql file to create these (e.g. otrs-schema-oracle.post.sql, otrs-
schema-post.postgresql.sql).

After you have finished the database setup, you should check and set proper access rights for the
OTRS database. It should be enough to grant access to one user. Depending on the database
server you are using, setting up the access rights differs, but it should be possible either with
your database client or your graphical database front-end.

If your database and the access rights are configured properly, you have to tell OTRS which
database back-end you want to use and how the ticket system can connect to the database.
Open the file Kernel/Config.pm located in the home directory of the 'otrs' user, and change
the parameters shown in the script below according to your needs.

Installation

28

 # DatabaseHost
 # (The database host.)
 $Self->{'DatabaseHost'} = 'localhost';

 # Database
 # (The database name.)
 $Self->{Database} = 'otrs';

 # DatabaseUser
 # (The database user.)
 $Self->{DatabaseUser} = 'otrs';

 # DatabasePw
 # (The password of database user.)
 $Self->{DatabasePw} = 'some-pass';

Script: Parameters to be customized.

Setting up the cron jobs for OTRS
OTRS needs some cron jobs to work properly. The cron jobs should be run with the same user
rights that were specified for the OTRS modules. That means that the cron jobs must be inserted
into the crontab file of the 'otrs' user.

All scripts with the cron jobs are located in var/cron, in the home directory of the 'otrs' user
(see Script below).

linux:~# cd /opt/otrs/var/cron
linux:/opt/otrs/var/cron# ls
aaa_base.dist generic_agent.dist
 rebuild_ticket_index.dist
cache.dist pending_jobs.dist session.dist
fetchmail.dist postmaster.dist unlock.dist
generic_agent-database.dist postmaster_mailbox.dist
linux:/opt/otrs/var/cron#

Script: Files needed to create the cron jobs.

These scripts have a suffix of '.dist'. You should copy them to files with the suffix removed. If you
use bash, you might want to use the command listed in Script below.

linux:/opt/otrs/var/cron# for foo in *.dist; do cp $foo `basename
 $foo .dist`; done
linux:/opt/otrs/var/cron# ls
aaa_base generic_agent-database.dist
 rebuild_ticket_index
aaa_base.dist generic_agent.dist
 rebuild_ticket_index.dist
cache pending_jobs session
cache.dist pending_jobs.dist session.dist
fetchmail postmaster unlock

Installation

29

fetchmail.dist postmaster.dist unlock.dist
generic_agent postmaster_mailbox
generic_agent-database postmaster_mailbox.dist
linux:/opt/otrs/var/cron#

Script: Copying and renaming all the files needed to create the cron jobs.

Table 3-2 describes the different cron jobs.

Table 3.2. Description of several cron job scripts.
Script Function
aaa_base Sets the basics for the crontab of the 'otrs' user.
cache Removes expired cache entries from disk.

Clears the loader cache for CSS and
JavaScript files.

fetchmail Used only if new mails will be fetched with
fetchmail into the ticket system.

generic_agent Executes the jobs of the GenericAgent that are
not stored in the database but in own config
files.

generic_agent-database Executes the jobs of the GenericAgent that are
stored in the database.

pending_jobs Checks system for pending tickets, and closes
them or sends reminders if needed.

postmaster Checks the message queue of the ticket
system, and delivers messages that are still in
the queues.

postmaster_mailbox Fetches the mails from the POP3 accounts that
were specified in the admin area, in the section
for "PostMaster Mail Accounts".

rebuild_ticket_index Rebuilds the ticket index, which improves the
speed of the QueueView.

session Removes old and no longer needed session
IDs.

unlock Unlocks tickets in the system.

To setup all cron jobs, the script bin/Cron.sh located in the home directory of the 'otrs' user
can be used. When this script is executed, it needs a parameter to specify whether you want to
install, remove or reinstall the cron jobs. The following parameters can be used:

Cron.sh { start } { stop } { restart } [OTRS user]

Because the cron jobs need to be installed in the crontab file of the 'otrs' user, you need to be
logged in as 'otrs'. If you are logged in as root, you can switch to 'otrs' with the command su otrs.
Execute the commands specified in Script below to install the cron jobs.

Warning
Please note that other crontab entries of the 'otrs' user will be overwritten or removed by
the Cron.sh script. Please change the Cron.sh script to retain other crontab entries
as needed.

Installation

30

linux:/opt/otrs/var/cron# cd /opt/otrs/bin/
linux:/opt/otrs/bin# su otrs
linux:~/bin$./Cron.sh start
/opt/otrs/bin
Cron.sh - start/stop OTRS cronjobs
Copyright (C) 2001-2009 OTRS AG, http://otrs.org/
(using /opt/otrs) done
linux:~/bin$ exit
exit
linux:/opt/otrs/bin#

Script: Installing the cron jobs.

The command crontab -l -u otrs, which can be executed as root, shows you the crontab file of
the 'otrs' user, and you can check if all entries are placed correctly (see Script below).

linux:/opt/otrs/bin# crontab -l -u otrs
--
cron/aaa_base - base crontab package
Copyright (C) 2001-2012 OTRS AG, http://otrs.org/
--
This software comes with ABSOLUTELY NO WARRANTY.
--
Who gets the cron emails?
MAILTO="root@localhost"

--
cron/cache - delete expired cache
Copyright (C) 2001-2012 OTRS AG, http://otrs.org/
This software comes with ABSOLUTELY NO WARRANTY.
--
delete expired cache weekly (Sunday mornings)
20 0 * * 0 $HOME/bin/otrs.CacheDelete.pl --expired >> /dev/null
30 0 * * 0 $HOME/bin/otrs.LoaderCache.pl -o delete >> /dev/null

--
cron/fetchmail - fetchmail cron of the OTRS
Copyright (C) 2001-2012 OTRS AG, http://otrs.org/
--
This software comes with ABSOLUTELY NO WARRANTY.
--
fetch every 5 minutes emails via fetchmail
#*/5 * * * * /usr/bin/fetchmail -a >> /dev/null

--
cron/generic_agent - otrs.GenericAgent.pl cron of the OTRS
Copyright (C) 2001-2012 OTRS AG, http://otrs.org/
--
--
This software comes with ABSOLUTELY NO WARRANTY.
--
start generic agent every 20 minutes
*/20 * * * * $HOME/bin/GenericAgent.pl >> /dev/null

Installation

31

example to execute GenericAgent.pl on 23:00 with
Kernel::Config::GenericAgentMove job file
#0 23 * * * $HOME/bin/otrs.GenericAgent.pl -c
 "Kernel::Config::GenericAgentMove" >> /dev/null
--
cron/generic_agent - GenericAgent.pl cron of the OTRS
Copyright (C) 2001-2012 OTRS AG, http://otrs.org/
--
This software comes with ABSOLUTELY NO WARRANTY.
--
start generic agent every 10 minutes
*/10 * * * * $HOME/bin/otrs.GenericAgent.pl -c db >> /dev/null
--
cron/pending_jobs - pending_jobs cron of the OTRS
Copyright (C) 2001-2012 OTRS AG, http://otrs.org/
--
This software comes with ABSOLUTELY NO WARRANTY.
--
check every 120 min the pending jobs
45 */2 * * * $HOME/bin/otrs.PendingJobs.pl >> /dev/null
--
cron/postmaster - postmaster cron of the OTRS
Copyright (C) 2001-2012 OTRS AG, http://otrs.org/
--
This software comes with ABSOLUTELY NO WARRANTY.
--
check daily the spool directory of OTRS
#10 0 * * * * test -e /etc/init.d/otrs & /etc/init.d/otrs cleanup
 >> /dev/null; test -e /etc/rc.d/init.d/otrs && /etc/rc.d/init.d/otrs
 cleanup >> /dev/null
10 0 * * * $HOME/bin/otrs.CleanUp.pl >> /dev/null
--
cron/postmaster_mailbox - postmaster_mailbox cron of the OTRS
Copyright (C) 2001-2012 OTRS AG, http://otrs.org/
--
This software comes with ABSOLUTELY NO WARRANTY.
--
fetch emails every 10 minutes
*/10 * * * * $HOME/bin/otrs.PostMasterMailbox.pl >> /dev/null
--
cron/rebuild_ticket_index - rebuild ticket index for OTRS
Copyright (C) 2001-2012 OTRS AG, http://otrs.org/
--
This software comes with ABSOLUTELY NO WARRANTY.
--
just every day
01 01 * * * $HOME/bin/otrs.RebuildTicketIndex.pl >> /dev/null

--
cron/session - delete old session ids of the OTRS
Copyright (C) 2001-2012 OTRS AG, http://otrs.org/
--
This software comes with ABSOLUTELY NO WARRANTY.
--

Installation

32

delete every 120 minutes old/idle session ids
55 */2 * * * $HOME/bin/otrs.DeleteSessionIDs.pl --expired >> /dev/null

--
cron/unlock - unlock old locked ticket of the OTRS
Copyright (C) 2001-2012 OTRS AG, http://otrs.org/
--
This software comes with ABSOLUTELY NO WARRANTY.
--
unlock every hour old locked tickets
35 * * * * $HOME/bin/otrs.UnlockTickets.pl --timeout >> /dev/null

linux:/opt/otrs/bin#

Script: Crontab file.

Upgrading the OTRS Framework
These instructions are for people upgrading OTRS from version 3.0 to 3.1, and apply both for
RPM and source code (tarball) upgrades.

If you are running a lower version of OTRS you have to follow the upgrade path to 3.0 first (1.1-
>1.2->1.3->2.0->2.1->2.2->2.3->2.4->3.0->3.1 ...)!

Please note that if you upgrade from OTRS 2.2 or earlier, you have to take an extra step; please
read http://bugs.otrs.org/show_bug.cgi?id=6798.

If you need to do a "patch level upgrade", which is an upgrade for instance from OTRS version
3.1.1 to 3.1.3, you should skip steps 8, 10 and 12-19.

Please note that for upgrades from 3.1.beta1 or 3.1.beta2, an additional step 20 is needed!

If you are using Microsoft SQL Server as the DBMS for OTRS, please refer to the manual, chapter
"Upgrading Microsoft SQL Server Data Types" for instructions how to upgrade the data types
used by OTRS (http://doc.otrs.org/3.1/en/html/upgrading-mssql-datatypes.html).

1. Stop all relevant services.

e. g. (depends on used services):

shell> /etc/init.d/cron stop
shell> /etc/init.d/postfix stop
shell> /etc/init.d/apache stop

2. Backup everything below $OTRS_HOME (default: OTRS_HOME=/opt/otrs):

• Kernel/Config.pm

• Kernel/Config/GenericAgent.pm

• Kernel/Config/Files/ZZZAuto.pm

• var/*

3. Backup the database.

http://bugs.otrs.org/show_bug.cgi?id=6798
http://doc.otrs.org/3.1/en/html/upgrading-mssql-datatypes.html

Installation

33

4. Make sure that you have backed up everything ;-)

5. Setup new system (optional)

If possible, try this install on a separate machine for testing first.

6. Install the new release (tar or RPM).

• With the tarball:

shell> cd /opt
shell> tar -xzf otrs-x.x.x.tar.gz
shell> ln -s otrs-x.x.x otrs

Restore old configuration files.

• Kernel/Config.pm

• Kernel/Config/GenericAgent.pm

• Kernel/Config/Files/ZZZAuto.pm

• With the RPM:

shell> rpm -Uvh otrs-x.x.x.-01.rpm

In this case the RPM update automatically restores the old configuration files.

7. Own themes

Note: The OTRS themes between 3.0 and 3.1 are NOT compatible, so don't use your old
themes!

Themes are located under $OTRS_HOME/Kernel/Output/HTML/*/*.dtl (default:
OTRS_HOME=/opt/otrs).

8. Set file permissions.

If the tarball is used, execute:

shell> cd /opt/otrs/
shell> bin/otrs.SetPermissions.pl

with the permissions needed for your system setup.

9. Apply the database changes (part 1/2):

shell> cd /opt/otrs/

MySQL:

Installation

34

shell> cat scripts/DBUpdate-to-3.1.mysql.sql | mysql -p -f -u root
 otrs
PostgreSQL 8.2+:
shell> cat scripts/DBUpdate-to-3.1.postgresql.sql | psql otrs
PostgreSQL, older versions:
shell> cat scripts/DBUpdate-to-3.1.postgresql_before_8_2.sql | psql
 otrs

NOTE: If you use PostgreSQL 8.1 or earlier, you need to activate the new legacy driver for
these older versions. Do this by adding a new line to your Kernel/Config.pm like this:

$Self->{DatabasePostgresqlBefore82} = 1;

Run the migration script (as user 'otrs', NOT as root):

You must execute the migration script to migrate some data from the old database structure
to the new one. Please run:

shell> scripts/DBUpdate-to-3.1.pl

Apply the database changes (part 2/2):

MySQL:
shell> cat scripts/DBUpdate-to-3.1-post.mysql.sql | mysql -p -f -u
 root otrs
PostgreSQL 8.2+:
shell> cat scripts/DBUpdate-to-3.1-post.postgresql.sql | psql otrs
PostgreSQL, older versions:
shell> cat scripts/DBUpdate-to-3.1-post.postgresql_before_8_2.sql |
 psql otrs

10.Refresh the configuration and delete caches. Please run:

shell> bin/otrs.RebuildConfig.pl
shell> bin/otrs.DeleteCache.pl

11.Update your web server configuration

Note: this applies only if you use the Apache web server together with mod_perl2, and do
not use the configuration file directly from the OTRS installation directory (e. g. with a symlink
from the Apache configuration directory).

Please add a new setting to the Apache configuration file for OTRS:

set mod_perl2 option for generic interface
<Location /otrs/nph-genericinterface.pl>

Installation

35

 PerlOptions -ParseHeaders
</Location>

Please see the file /opt/otrs/scripts/apache2-httpd.include.conf for an example of where this
new option needs to be added (inside the <IfModule mod_perl.c> block).

In this file, you will also note a new section on caching:

<IfModule mod_headers.c>
 <Directory "/opt/otrs/var/httpd/htdocs/skins/*/*/css-cache">
 <FilesMatch "\.(css|CSS)$">
 Header set Cache-Control "max-age=2592000 must-
revalidate"
 </FilesMatch>
 </Directory>

 <Directory "/opt/otrs/var/httpd/htdocs/js/js-cache">
 <FilesMatch "\.(js|JS)$">
 Header set Cache-Control "max-age=2592000 must-
revalidate"
 </FilesMatch>
 </Directory>
</IfModule>

Please activate this in your local installation too, and make sure that mod_headers is installed
and active.

12.Restart your services.

e. g. (depends on used services):

shell> /etc/init.d/cron start
shell> /etc/init.d/postfix start
shell> /etc/init.d/apache start

Now you can log into your system.

13.Check installed packages

In the package manager, check if all packages are still marked as correctly installed or if any
require reinstallation or even a package upgrade.

14.Check for encoding issues

OTRS 3.1 only allows UTF-8 as internal charset. Non-UTF-8 installations of OTRS must switch
to UTF-8.

15.Escalation events

If you want to use the new escalation events in your system, you need to activate the
corresponding GenericAgent job in Kernel/Config/GenericAcent.pm. Please look into Kernel/
Config/GenericAgent.pm.dist for an example of how to do this.

Installation

36

16.Ticket event handlers

The Event name TicketFreeTextUpdate_$Counter was renamed to
TicketDynamicFieldUpdate_$FieldName. If you have any custom event handlers for these
events, please adapt them.

17.DynamicField user preferences module

If you had one or more active custom settings for "PreferencesGroups###Freetext", you need
to adapt them to work with the new DynamicFields engine. The PrefKey setting must be
changed to "UserDynamicField_DynamicField", where the part after the _ is the name of the
dynamic field. Existing values would need to be renamed in the database as well.

18.Custom free field default value event handler

If you used the event handler Ticket::EventModulePost###TicketFreeFieldDefault (not
active by default), you'll need to migrate its configuration to the new setting
Ticket::EventModulePost###TicketDynamicFieldDefault.

The configuration of this is slightly different; where you had to specify a Counter
indicating the TicketFreeText number previously, now you need to specify the name of the
DynamicField (for migrated fields, this will be DynamicField_TicketFreeKey$Counter and
DynamicField_TicketFreeText$Counter. You need two separate entries now if you want to set
both the key and the text field.

19.FreeText/Time based ACLs

If you have any ACLs defined which involve freetext or freetime fields, you need to adjust
these ACL definitions.

Please have a look at http://doc.otrs.org/3.1/en/html/acl.html. There you can find a list of all
possible ACL settings. In general, you need to add the prefix "DynamicField_" to existing free
field definitions, and you can add a new "DynamicField" section to the "Properties" list for
situations when a ticket does not exist yet.

20.Database Upgrade During Beta Phase

This step is ONLY needed if you upgrade from 3.1.beta1 or 3.1.beta2! Please apply the
required database changes as follows:

MySQL:
 shell> cat scripts/DBUpdate-3.1.beta.mysql.sql | mysql -p -f -u
 root otrs

PostgreSQL 8.2+:
 shell> cat scripts/DBUpdate-3.1.beta.postgresql.sql | psql otrs

PostgreSQL, older versions:
 shell> cat scripts/DBUpdate-3.1.beta.postgresql_before_8_2.sql |
 psql otrs

21.Well done!

http://doc.otrs.org/3.1/en/html/acl.html

Installation

37

Upgrading Windows Installer
There is currently no in-place upgrade tool available for OTRS installations that were done with
the Windows Installer. The upgrade process basically consists of backing up the database and
the filesystem, uninstalling OTRS, installing the new version, restoring the database and running
the upgrade procedure if needed.

Upgrading is described in FAQ# 4200351 [http://faq.otrs.org/otrs/public.pl?
Action=PublicFAQ;ItemID=351], and there is also an informative YouTube video [http://
www.youtube.com/watch?v=sf0R-reMTWc] available.

Upgrading Microsoft SQL Server Data Types
Starting OTRS version 3.1, OTRS uses the NVARCHAR data type rather than VARCHAR or
TEXT, to store textual data. This is because the NVARCHAR type has full support for Unicode,
whereas the old data types store data in UCS-2 format, which is a sub-set of Unicode. Also, the
TEXT data type is deprecated since SQL Server 2005. Due to this, starting with OTRS version
3.1, the minimal SQL Server version required for operation with OTRS is now Microsoft SQL
Server 2005.

Because dropping and re-creating these indexes is a time-consuming operation, especially on
large databases, please plan enough time for performing the upgrade. We would recommend
that you perform the upgrade on a copy of the database prior to doing the actual conversion to test
the upgrade procedure and to time how much time will be needed on your specific environment.

Please make sure that, before you start, there is enough space available on the database server.
Make sure the free space on your database server is at least 2.5x the current size of the database.

Important
This upgrade procedure will upgrade all fields of the mentioned data types to the new
types. This procedure first removes any indexes and constraints in which these fields
are referenced, upgrades the fields, and then adds the indexes and constraints back. It
will do so on all tables found in the SQL Server database that OTRS uses. If you would
have stored non-OTRS tables in the OTRS database, and these tables contain columns
of the data types VARCHAR or TEXT, these will also be updated.

1. Open a Command Line on the OTRS server.

2. Change directory to the OTRS root directory. If you're using the default OTRS installer this
would be C:\Program Files\OTRS\OTRS.

3. Run the following command:

shell> perl scripts/DUpdate-to-3.1.mssql-datatypes.pl

4. This will generate three scripts in the specified directory scripts\database\update. Run these
scripts on the SQL Server database, via SQL Server Management Studio or isql.

http://faq.otrs.org/otrs/public.pl?Action=PublicFAQ;ItemID=351
http://faq.otrs.org/otrs/public.pl?Action=PublicFAQ;ItemID=351
http://faq.otrs.org/otrs/public.pl?Action=PublicFAQ;ItemID=351
http://www.youtube.com/watch?v=sf0R-reMTWc
http://www.youtube.com/watch?v=sf0R-reMTWc
http://www.youtube.com/watch?v=sf0R-reMTWc

38

Chapter 4. First steps
This chapter's goal is to give a quick overview of OTRS and the structure of its web interface. The terms
agents, customers and administrators are introduced. We also login as the OTRS admininstrator and take
a closer look at the user preferences available for every account.

Agent web interface
The agent web interface allows agents to answer customer requests, create new tickets for
customers or other agents, write tickets about telephone calls with customers, write FAQ entries,
edit customer data, etc.

Supposing your OTRS host is reachable via the URL http://www.example.com [http://
www.example.com/] , then the OTRS login screen can be reached by using the address http://
www.example.com/otrs/index.pl [http://www.example.com/otrs/index.pl] in a web browser (see
Figure below).

Figure: Login screen of the agent interface.

Customer web interface
Customers have a separate web interface in OTRS, through which they can create new accounts,
change their account settings, create and edit tickets, get an overview on tickets that they created,
etc.

Continuing with the above example, the customer login screen can be reached by using the
URL http://www.example.com/otrs/customer.pl [http://www.example.com/otrs/customer.pl] with
a web browser (see Figure below).

http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/otrs/index.pl
http://www.example.com/otrs/index.pl
http://www.example.com/otrs/index.pl
http://www.example.com/otrs/customer.pl
http://www.example.com/otrs/customer.pl

First steps

39

Figure: Login screen of the customer interface.

Public web interface
In addition to the web interfaces for agents and customers, OTRS also has a public web interface
that is available through the FAQ-Module. This module needs to be installed separately. It
provides public access to the FAQ system, and lets visitors search through FAQ entries without
any special authorization.

In our example, the public web interface can be reached via either of the URLs below: http://
www.example.com/otrs/faq.pl [http://www.example.com/otrs/faq.pl] , http://www.example.com/
otrs/public.pl [http://www.example.com/otrs/public.pl]

Figure: Public web interface.

http://www.example.com/otrs/faq.pl
http://www.example.com/otrs/faq.pl
http://www.example.com/otrs/faq.pl
http://www.example.com/otrs/public.pl
http://www.example.com/otrs/public.pl
http://www.example.com/otrs/public.pl

First steps

40

First login
Access the login screen as described in the section Agent web interface . Enter a user name and
a password. Since the system has just been freshly installed and no users have yet been created,
login as OTRS administrator first, using 'root@localhost' for username and 'root' for password.

Warning
This account data is valid on every newly installed OTRS system. You should change
the password for the OTRS administrator as soon as possible! This can be done via the
preferences screen for the OTRS administrator account.

If you don't want to login as OTRS administrator, just enter the user name and password for your
normal agent account.

In case you have forgotten your password, you can request the system for a new password.
Simply press the link below the Login button, enter the mail address that is registered for your
OTRS account into the input field, and press the Submit button (see Figure).

Figure: Request new password.

The web interface - an overview
On successfully logging into the system, you are presented with the Dashboard page (see Figure
below). The Dashboard is completely customizable. It shows your locked tickets, allows direct
access through menus to the queue, status and escalation views, and also holds options for
creation of new phone and e-mail tickets. It also presents a quick summary of the tickets which
are pending, escalated, new and open.

First steps

41

Figure: Dashboard of the agent interface.

To improve clarity, the general web interface is separated into different areas. The top row of
each page shows some general information such the current username, the logout button, icons
listing the number of locked tickets with direct access to them, links to create a new phone/e-
mail ticket, etc. There are also icons to go to the queue, status and escalation views.

Below the icons row is the navigation bar. It shows a menu that enables you to navigate to
different areas or modules of the system, lettng you execute some global actions. Clicking on
the Dashboard button takes you to the dashboard which is the default start page after login. If
you click on the Tickets button, you will get a submenu with options to change the ticket's view,
create a new ticket (phone/e-mail) or search for a specific ticket. The Statistics button presents
a menu that allows choosing from an overview of the registered statistics, creating a new one or
importing an existing one. The Customers button leads you to the Customer Managment screen.
By clicking the Admin button, you can access all the administrator modules, allowing you to
create new agents, queues, etc. There is also a Search button to make ticket searches.

If any associated applications are also installed, e.g. the File Manager or the Web Mailer, buttons
to reach these applications are also displayed.

The red bar below the navigation bar shows different system messages. If you are logged in as
OTRS administrator, you get a message warning you not to work using this system account.

Below the title of the section you are currently in, there are several subsections each in a separate
box. These boxes can be relocated within the same column by clicking on and dragging the box
header, and dropping them elsewhere.

In the left column, you can see information on some tickets clasified as - reminder, escalated,
new and open. In each of the categories, you are also able to see all tickets you are allowed
to access, how many tickets you have locked and how many are located in "My Queues". "My
Queues" are queues that you identify in your user configuration account preferences as those
you have a special interest in tracking.

In the right column is the Settings button. Click on it to expand the section and see the various
settings, as shown in Figure. You can then check or uncheck the individual settings options, and
save your changes. This section is fixed, so you can not drag and drop it.

First steps

42

Figure: Dashboard Settings.

Below the settings area, you can see a section with a graph of ticket activity over the past 7 days.
Further below is a section showing Upcoming Events and OTRS News.

Finally at the bottom of the page, the site footer is displayed (see Figure below). It contains links
to directly access the OTRS official website, or go to the Top of the page.

Figure: Footer.

What is a queue?
On many mail systems, it is common for all messages to flow into an Inbox file, where they remain
stored. New messages are appended at the end of the Inbox file. The mail client program used
to read and write mails reads this Inbox file and presents the content to the user.

A queue in OTRS is somewhat comparable to an Inbox file, since it too can store many messages.
A queue also has features beyond those of an Inbox mail file. As an OTRS agent or user, one
needs to remember which queue a ticket is stored in. Agents can open and edit tickets in a queue,
and also move tickets from one queue to another. But why would they move tickets?

To explain it more practically, remember the example of Max's company described in an example
of a ticket system. Max installed OTRS in order to allow his team to better manage support for
company customers buying video recorders.

One queue holding all requests is enough for this situation. However, after some time Max
decides to also sell DVD recorders. Now, the customers have questions not only about the video
recorder, but also the new product. More and more emails get into the one queue of Max's OTRS
and it's hard to have a clear picture of what's happening.

Max decides to restructure his support system, and adds two new queues. So now three queues
are being used. Fresh new mails arriving at the ticket system are stored into the old queue titled
"raw". Of the two new queues, one titled "video recorder" is for video recorder requests, while
the other one titled "dvd recorder" is for dvd recorder requests.

First steps

43

Max asks Sandra to watch the "raw" queue and sort (dispatch) the mails either into "video
recorder" or "dvd recorder" queue, depending on the customer request. John only has access
to the "video recorder" queue, while Joe can only answer tickets in the "dvd recorder" queue.
Max is able to edit tickets in all queues.

OTRS supports access management for users, groups and roles, and it is easy to setup queues
that are accessible only to some user accounts. Max could also use another way to get his
requests into the different queues, with filter rules. Else, if two different mail addresses are used,
Sandra only has to dispatch those emails into the two other queues, that can't be dispatched
automatically.

Sorting your incoming messages into different queues helps you to keep the support system
structured and tidy. Because your agents are arranged into different groups with different access
rights on queues, the system can be optimized even further. Queues can be used to define
work flow processes or to create the structure of a company. Max could implement, for example,
another queue called "sales", which could contain the sub queues "requests", "offers", "orders",
"billing", etc. Such a queue structure could help Max to optimize his order transactions.

Improved system structures, such as through the proper design of queues, can lead to significant
time and cost savings. Queues can help to optimize the processes in your company.

User preferences
OTRS users such as customers, agents and the OTRS administrator can configure their account
preferences as per their needs. Agent can access the configuration screen by clicking on their
login name at the top right corner of the web interface (see Figure below), and customers must
click on the "Preferences" link (see Figure below).

Figure: Agent's personal preferences.

An agent can configure 3 different categories of preferences: user profile, email settings and
other settings. The default posibilities are:

User Profile

• Change the current password.

First steps

44

• Adjust the interface language.

• Switch the frontend skin.

• Shift the frontend theme.

• Activate and configure the out-of-office time.

Email Settings

• Select events that trigger email notifications to the agent.

Other Settings

• Select the queues you want to monitor in "My Queues".

• Set the refresh period for the queue view.

• Set the screen to be displayed after a ticket is created.

Figure: Customer's personal preferences.

A customer can select the web interface language, set the refresh interval for the ticket overview,
and choose the maximum amount of shown tickets. It is also possible to set a new password.

45

Chapter 5. The ADMIN area of OTRS
Basics

OTRS administrators use the Admin page on the OTRS web interface to configure the system
- adding agents, customers and queues, ticket and mail settings, installing additional packages
such as FAQ and ITSM, and much more.

Agents who are members of the admin group can access the Admin area by clicking the Admin
link in the navigation bar (see Figure below). The rest of the agents won't see this link.

Figure: OTRS Admin screen.

Agents, Groups and Roles
Agents

By clicking the link Agents, you get access to the agent management screen of OTRS (see Figure
below). Administrators can add, change or deactivate agent accounts. Administrators can also
manage agent preferences, for instance the language and notification settings for their interface.

Note
An OTRS agent account may be deactivated but not deleted. Deactivation is done by
setting the Valid flag to invalid or invalid-temporarily.

The ADMIN area of OTRS

46

Figure: Agent management.

To register an agent, click on the "Add agent" button, type all the needed data and press the
Submit button at the bottom of the screen, as shown in Figure.

Figure: Adding a new agent.

After the new agent account has been created, you should make the agent a member of one or
more groups or roles. Information about groups and roles is available in the Groups and Roles
sections of this chapter.

Groups
Every agent's account should belong to at least one group or role. In a brand new installation,
there are three pre-defined groups available, as shown in Table 5-1.

The ADMIN area of OTRS

47

Table 5.1. Default groups available on a fresh OTRS installation

Group Description
admin Allowed to perform administrative tasks in the

system.
stats Qualified to access the stats module of OTRS

and generate statistics.
users Agents should belong to this group, with read

and write permissions. They can then access
all functions of the ticket system.

Note
In a brand new OTRS installation, the group users is initially empty. The agent
'root@localhost' belongs by default to the admin and stats groups.

You can access the group management page (see Figure below) by clicking the Groups link in
the admin area.

Figure: Group management.

Note
As with agents, an OTRS group may be deactivated but not deleted. Deactivation is
done by setting the Valid flag to invalid or invalid-temporarily.

To add an agent to a group, or to change the agents who belong to a group, you can use the link
Agents <-> Groups from the Admin page (see Figure below).

The ADMIN area of OTRS

48

Figure: Group management.

An overview of all groups and agents in the system is displayed. You can also use the filters to
find a specific entity. If you want to change the groups that an agent is member of, just click on
the agent's name (see Figure below). To change the agents associated with a group, just click
on the group you want to edit (see Figure below).

Figure: Change the groups an agent belongs to.

The ADMIN area of OTRS

49

Figure: Change the agents that belong to a specific group.

Each group has a set of rights associated with it, and each member agent may have some
combination of these rights for themselves. A list of the permissions / rights is shown in Table 5-2.

Table 5.2. Rights associated with OTRS Groups
Right Description
ro Read only access to the tickets, entries and

queues of this group.
move into Right to move tickets or entries between

queues or areas that belong to this group.
create Right to create tickets or entries in the queues

or areas of this group.
owner Right to update the owner of tickets or entries

in queues or areas that belong to this group.
priority Right to change the priority of tickets or entries

in queues or areas that belong to this group.
rw Full read and write access on tickets or entries

in the queues or areas that belong to this group.

Note
By default, the QueueView only lists tickets in queues that an agent has rw access to,
i.e., the tickets the agent needs to work on. If you want to change this behaviour, you
can set Ticket::Frontend::AgentTicketQueue###ViewAllPossibleTickets to Yes.

Roles
Roles are a powerful feature to manage the access rights of many agents in a very simple and
quick manner. They are particularly applicable on large, complex support systems with a lot of
agents, groups and queues. An example below explains when they may be used.

Suppose that you have a system with 100 agents, 90 of them with access to a single queue
called "support" where all support requests are handled. The "support" queue contains some

The ADMIN area of OTRS

50

sub queues. The other 10 agents have permission to access all queues of the system. These 10
agents dispatch tickets, watch the raw queue and move spam messages into the "junk" queue.

The company now opens a new department that sells some products. Order request and
acceptance, order confirmation, bills, etc. must be processed, and some of the company's agents
shall do this via OTRS. The different agents have to get access to the new queues that must
be created.

Because it would take a long time to change the access rights for the different agents manually,
roles that define the different access levels can be created. The agents can then be added to
one or more roles, with their rights automatically changed. If a new agent account is created, it
is also possible to add this account to one or more roles.

Note
Roles are really useful when maintaining larger OTRS installations. You should take care
in their use though. Mixing Agent to Group with Agent to Role mappings can make for
a complex access control scheme, difficult to understand and maintain. If you wish to
use only roles and disable the Agents <-> Groups option in the Admin area, you can do
so by modifying the Frontend::Module###AdminUserGroup in the SysConfig. Be aware
that this won't remove already existing Agents to Group assignments!

You can access the role management section (see Figure below) by clicking the Roles link on
the Admin page.

Figure: Role management.

Note
As with agent and groups, roles once created can be deactivated but not deleted. To
deactivate, set the Valid option to invalid or invalid-temporarily.

An overview of all roles in the system is displayed. To edit a role's settings, click on the role's
name. In a fresh new OTRS installation, there are no roles defined by default. To register one,
click on the "Add role" button, provide the needed data and submit it (see Figure below).

The ADMIN area of OTRS

51

Figure: Adding a new role.

To get an overview of all roles and agents in the system, click on the link Roles <-> Agents on
the Admin page. You can also use filters to find a specific element. If you want to change the
roles associated with an agent, just click on the agent's name (see Figure below). To change the
agents associated with a role, click on the role you want to edit (see Figure below).

Figure: Change the Roles associated with an Agent.

The ADMIN area of OTRS

52

Figure: Change the Agents associated with a specific Role.

To get an overview of all roles and groups in the system, click on the link Roles <-> Groups on
the Admin page. You will see a similar screen as the one shown in the Figure. You can also use
filters to find a specific entity.

Figure: Manage Roles-Groups relations.

To define the different access rights for a role, click on the name of a role or a group (see below
the Figures 5.13 and 5.14, respectively).

The ADMIN area of OTRS

53

Figure: Change Group relations for a Role.

Figure: Change Role relations for a Group.

Customers and Customer Groups
Customers

OTRS supports different types of users. Using the link "Customers" (via the navigation bar, or
the Admin page), you can manage the accounts of your customers (see Figure below), who
can log into the system via the Customers interface (customer.pl). Through this interface, your
customers can create tickets and access them as they are updated. It is important to know that
a customer is needed for the ticket history in the system.

The ADMIN area of OTRS

54

Figure: Customer management.

You can search for a registered customer, or edit their settings by clicking on their name. You
also have the possibility to change the customer back-end, for further information please refer
to the chapter about external back-ends.

To create a new customer account, click on the "Add customer" button (see Figure below). Some
of the fields are mandatory, i.e., they have to contain values, so if you leave one of those empty,
it will be highlighted in red.

Figure: Adding a customer.

Customers can access the system by providing their username and password. The CustomerID
is needed by the system to identify the user and associated tickets. Since the email address is
a unique value, it can be used as the ID.

Note
As with agents, groups and roles, customers can not be deleted from the system, only
deactivated by setting the Valid option to invalid or invalid-temporarily.

The ADMIN area of OTRS

55

Customer Groups
Customer users can also be added to a group, which can be useful if you want to add customers
of the same company with access to one or a few queues. First create the group to which your
customers will belong, via the Group management module. Then add the queues and select the
new group for the queues.

The next step is to activate the customer group support. This can be done with the configuration
parameter CustomerGroupSupport, from the Admin SysConfig option. Using the parameter
CustomerGroupAlwaysGroups, you can specify the default groups for a newly added customer,
so that every new account will be automatically added to these groups.

Through the link "Customers <-> Groups" you can manage which customer shall belong to the
different groups (see Figure below).

Figure: Customer-Group relations management.

To define the different groups a customer should be part of and vice versa, click on the
corresponding customer username or group (see below the Figures 5.16 and 5.17, respectively).

The ADMIN area of OTRS

56

Figure: Change Group relations for a Customer.

Figure: Change Customer relations for a Group.

Queues
Clicking on the link "Queues" of the Admin page, you can manage the queues of your system
(see Figure below). In a new OTRS installation there are 4 default queues: Raw, Junk, Misc and
Postmaster. All incoming messages will be stored in the "Raw" queue if no filter rules are defined.
The "Junk" queue can be used to store spam messages.

Figure: Queue management.

Here you can add queues (see Figure below) and modify them. You can specify the group that
should use the queue. You can also set the queue as a sub-queue of an existing queue.

The ADMIN area of OTRS

57

Figure: Adding a new queue.

You can define an unlock timeout for a queue - if an agent locks a ticket and does not close
it before the unlock timeout has passed, the ticket will be automatically unlocked and made
available for other agents to work on.

There are three escalation time settings that can be associated at queue level:

Escalation - First Response Time

• After creation of the ticket, if the time defined here expires without any communication to the
customer, either by email or phone, the ticket is escalated.

Escalation - Update Time

• If there is any customer followup via e-mail or the customer portal and recorded in the ticket,
the escalation update time is reset. If there is no customer contact before the time defined
here expires, the ticket is escalated.

Escalation - Solution Time

• If the ticket is not closed before the time defined here expires, the ticket is escalated.

With 'Ticket lock after a follow-up', you can define if a ticket should be set to 'locked' to the old
owner if a ticket that has been closed and later is re-opened. This ensures that a follow up for a
ticket is processed by the agent that has previously handled that ticket.

The parameter for the system address specifies the email address that will be used for the
outgoing tickets of this queue. There is also possibility to associate a queue with a salutation and
a signature, for the email answers. For more detailed information, please refer to the sections
email addresses, salutations and signatures.

Note
As with agents, groups and customers, queues cannot be deleted, only deactivated, by
setting the Valid option to invalid or invalid-temporarily.

The ADMIN area of OTRS

58

Salutations, signatures, attachments and
responses
Salutations

A salutation is a text module for a response. Salutations can be linked to one or more queues,
as described in the section about queues. A salutation is used only if a ticket from a queue the
salutation is linked to, is answered. To manage the different salutations of your system, use the
"Salutations" link of the admin area (see Figure below).

Figure: Salutation management.

After a default installation there is already one salutation available, "system standard salutation
(en)".

To create a new salutation, press the button "Add salutation", provide the needed data and submit
it (see Figure below).

The ADMIN area of OTRS

59

Figure: Adding a new salutation.

It is possible to use variables in salutations. When you respond to a ticket, the variable names
will be replaced by their values.

The different variables you can use in responses are listed in the lower part of the salutation
screen. If you use, for example, the variable <OTRS_LAST_NAME> the last name of the ticket's
sender will be included in your reply.

Note
As with other OTRS entities, salutations cannot be deleted, only deactivated by setting
the Valid option to invalid or invalid-temporarily.

Signatures
Another text module for a response is the signature. Signatures can be linked to a queue,
as described in the section about the queues. Only if a signature is linked to a queue will it
be included into the response text. Through the "Signatures" link of the Admin page, you can
manage the signatures in your system (see Figure below).

Figure: Signatures management.

After a fresh installation of OTRS, there is one predefined signature stored in your system,
"system standard signature (en)".

To create a new signature, press the button "Add signature", provide the needed data and submit
it (see Figure below).

The ADMIN area of OTRS

60

Figure: Adding a new signature.

Like salutations, signatures can also contain dynamical content, such as the first and last name
of the agent who answers the ticket. Here too, variables can be used to replace the content of the
signature text for every ticket. See the lower part of the signatures screen for the variables which
can be used. If you include the variable <OTRS_LAST_NAME> in a signature for example, the
last name of the agent who answers the ticket will replace the variable.

Note
As with salutations, signatures too cannot be deleted, only deactivated by setting the
Valid option to invalid or invalid-temporarily.

Attachments
You can also optionally add one or more attachments for a response. If the response is selected,
the attachments will be attached to the message composition window. If necessary, the agent
can remove the attachment from an individual response before sending it to the customer.

Through the "Attachment" link of the Admin page, you can load the attachments into the database
of the system (see Figure below).

The ADMIN area of OTRS

61

Figure: Attachments management.

To create a new attachment, press the button "Add attachment", provide the needed data and
submit it (see Figure below).

Figure: Adding a new attachment.

If an attachment is stored it can be linked to one or more responses. Click on the "Attachment
<-> Responses" link of the Admin page (see Figure below).

The ADMIN area of OTRS

62

Figure: Linking Attachments to Responses.

To associate different attachments with a specific response and vice versa, click on
the corresponding response name or attachment (see below the Figures 5.27 and 5.28,
respectively).

Figure: Change Attachment relations for a Response.

The ADMIN area of OTRS

63

Figure: Change Response relations for an Attachment.

Responses
To speed up the answering of tickets and to standardize the look of answers, you can define
responses in OTRS. A response can be linked to one or more queues and vice versa. In order
to be able to use a response quickly, the different responses are displayed below every ticket
in the QueueView or in "My Queues".

On a fresh OTRS installation, the "empty answer" response is defined for every queue. Clicking
the "Responses" link on the Admin page brings you to the Responses management page (see
Figure below).

Figure: Responses management.

To create a new response, click on the "Add response" button, provide the required data and
submit it (see Figure below).

The ADMIN area of OTRS

64

Figure: Adding a response.

To add/remove responses to one or more queues, click on the "Responses <-> Queues" link on
the Admin page (see Figure below). You can also use filters to get information on a specific entity.

Figure: Response-Queue relations management.

To define the different responses that will be available for a queue and vice versa, click on the
corresponding response or queue (see below the Figures 5.32 and 5.33, respectively).

The ADMIN area of OTRS

65

Figure: Change Queue relations for a Response.

Figure: Change Response relations for a Queue.

The structure of a response is intuitive. It includes the salutation associated with the queue, then
the text of the response, then the quoted ticket text, and finally the signature associated with
the queue.

Auto responses
OTRS allows you to send automatic responses to customers on the occurence of certain events,
such as the creation of a ticket in certain queue, reception of a follow-up message on a ticket,
closure or rejection of a ticket, etc. To manage such responses, click the link "Auto responses"
on the Admin page (see Figure below).

The ADMIN area of OTRS

66

Figure: Auto Response management.

To create an automatic response, click on the button "Add auto response", provide the needed
data and submit it (see Figure below).

Figure: Adding an Auto Response.

The subject and text of auto responses can be generated by variables, just as in signatures
and salutations. If you insert, for example, the variable <OTRS_CUSTOMER_EMAIL[5]> into
the body of the auto answer, the first 5 lines of the customer mail text will be inserted into the
auto answer. You will find more details about the valid variables that can be used at the bottom
of the screen shown in the Figure.

For every automatic answer, you can specify the event that should trigger it. The system events
that are available after a default installation are described in the Table 5-3.

The ADMIN area of OTRS

67

Table 5.3. Events for Auto answers

Name Description
auto reply Creation of a ticket in a certain queue.
auto reply/new ticket Reopening of an already closed ticket, e.g. if a

customer replies to such ticket.
auto follow up Reception of a follow-up for a ticket.
auto reject Automatic rejection of a ticket, done by the

system.
auto remove Deletion of a ticket, done by the system.

Note
As with other OTRS entities, Auto responses too cannot be deleted, only deactivated,
by setting the Valid option to invalid or invalid-temporarily.

To add an auto response to a queue, use the "Auto Response <-> Queues" link on the Admin
page (see Figure below). All system events are listed for every queue, and an auto answer with
the same event can be selected or removed via a listbox.

Figure: Queue-Auto Response relations management.

To define the different auto responses that will be available for a queue, click on the
corresponding queue name (see Figure below). It is also possible to edit an existing auto
response - to do so, click on the reponse and edit in the same manner as editing a new auto
response.

The ADMIN area of OTRS

68

Figure: Change Auto Response relations for a Queue.

Email addresses
To enable OTRS to send emails, you need a valid email address to be used by the system.
OTRS is capable of working with multiple email addresses, since many support installations need
to use more than one. A queue can be linked to many email addresses, and vice versa. The
address used for outgoing messages from a queue can be set when the queue is created. Use
the "Email Addresses" link from the Admin page to manage all email addresses of the system
(see Figure below).

Figure: System Email Addresses management.

If you create a new mail address (see Figure below) you can select the queue or sub queue to
be linked with it. This link enables the system to sort incoming messages via the address in the
To: field of the mail into the right queue.

The ADMIN area of OTRS

69

Figure: Adding a system Email Address.

Note
As with other OTRS entities, email addresses cannot be deleted, only deactivated by
setting the Valid option to invalid or invalid-temporarily.

Notifications
OTRS allows notifications to be sent to agents and customers, on the occurence of certain
events. Agents can set the system events for their own notifications via the preferences link.

Through the "Agent Notifications" link on the Admin page, you can manage the notifications of
your system (see Figure below). You can use filters to list only certain notifications.

Figure: Notification management.

The ADMIN area of OTRS

70

You can customize the subject and the text of the notifications. Click on the notification you want
to change from the list, and its content will get loaded for editing (see Figure). Please note that
there is a notification with the same name for each of the available languages.

Figure: Customizing a Notification.

Just as with signatures and salutations, it is possible to dynamically create the content of a
notification, by using special variables. You can find a list of variables at the bottom of the screen
shown in the Figure.

It is also possible to create notifications based on events. You can specify in detail when and to
whom you want such a notification to be sent. You can choose from a wide variety of parameters,
such as: recipient group(s), agent(s), role(s), email address(es), type of event triggering the
notification, ticket-type, state, priority, queue, lock, service, SLA, etc.

In order to see a list of all event based notifications, click on the link "Notifications (Event)" on
the Admin page (see Figure).

Figure: Event based Notification management.

The ADMIN area of OTRS

71

As shown in Figure, you can create a new notification by clicking on the Add button (see Figure).

Figure: Registering an Event based Notification management.

Please note that the content of the event based notifications can also be dynamically created by
using the special variables listed at the bottom of the screen shown in the Figure.

SMIME
OTRS can process incoming S/MIME encoded messages and sign outgoing mails. Before this
feature can be used, you need to activate it and change some config parameters in the SysConfig.

The "S/MIME Certificates" link on the Admin page allows you to manage your S/MIME certificates
(see Figure below). You can add or remove certificates, and also search through the SMIME data.

Figure: S/MIME management.

The ADMIN area of OTRS

72

PGP
OTRS handles PGP keys, which allows you to encrypt/decrypt messages and to sign outgoing
messages. Before this feature can be used, you need to activate it and change some config
parameters in the SysConfig.

Through the "PGP Keys" link on the Admin page, it is possible to manage the key ring of the user
who shall be used for PGP with OTRS (see Figure below), e.g. the local OTRS user or the web
server user. It is possible to add and remove keys and signatures, and you can search through
all data in your key ring.

Figure: PGP management.

States
Through the "States" link on the Admin page, you can manage the different ticket states you
want to use in the system (see Figure below).

The ADMIN area of OTRS

73

Figure: State management.

After a default setup, there are some states defined:

• closed successful

• closed unsuccessful

• merged

• new

• open

• pending auto close+

• pending auto close-

• pending reminder

• removed

Every state is linked to a type, which needs to be specified if a new state is created. By default
the state types are:

• closed

• merged

• new

• open

• pending auto

• pending reminder

• removed

SysConfig
The SysConfig link leads to the section where many OTRS configuration options are maintained.

The SysConfig link on the Admin page loads the graphical interface for system configuration (see
Figure below). You can upload your own configuration files for the system, as well as backup all
your current settings into a file. Almost all configuration parameters of the OTRS framework and
installed applications can be viewed and changed through this interface. Since all configuration
parameters are sorted into groups and sub groups, it is possible to navigate quickly through
the multitude of the parameters. It is also possible to perform a full-text search through all the
configuration parameters.

The ADMIN area of OTRS

74

Figure: The graphical interface for system configuration (SysConfig).

The graphical interface for system configuration is described in more detail in the chapter
"Configuring the system through the web interface".

Using mail accounts
There are several possibilities to transport new emails into the ticket system. One of them is the
otrs.PostMaster.pl module that pipes the mails directly into the system. Another possibility is the
use of mail accounts which can be administrated through the web interface. The "PostMaster
Mail Accounts" link on the Admin page loads the management console for the mail accounts
(see Figure below). OTRS supports the mail protocols: POP3, POP3S, IMAP and IMAPS.

Figure: Mail account management.

See the section about the PostMaster mail accounts for more details.

The ADMIN area of OTRS

75

Filtering incoming messages
OTRS has the capability to filter incoming messages, as reflected by incoming messages being
sorted automatically into queues, or spam mails being moved into a specific queue. It is irrelevant
whether PostMaster.pl or mail accounts are used to get messages into the ticket system.
Filter rules can be created through the link "PostMaster Filter" on the Admin page (see Figure
below).

Figure: PostMaster filter management.

A filter consists of one or more criteria that must match for the defined actions to be executed on
the email. Filter criteria may be defined for the headers or the body of an email, e.g. search for
specific header entries or strings in the body, even regular expressions are allowed. All actions
for a filter rule are triggered by X-OTRS headers, which are inserted if the filter criteria match.
The ticket system evaluates the inserted X-OTRS headers and executes the specific actions.
X-OTRS headers can be used to sort an incoming message into a specific queue, change the
priority of the message or ignore the message and not deliver it to the system. The Table 5-4
lists the different X-OTRS headers and their meaning.

Note: You also can use X-OTRS-FollowUp-* headers for follow up emails.

Table 5.4. Function of the different X-OTRS-headers

Name Possible values Description
X-OTRS-Priority: 1 very low, 2 low, 3 normal, 4

high, 5 very high
Sets the priority of a ticket.

X-OTRS-Queue: Name of a queue in the
system.

Sets the queue where the ticket
shall be sorted. If set in X-
OTRS header, all other filter
rules that try to sort a ticket into
a specific queue are ignored.

X-OTRS-Lock: lock, unlock Sets the lock state of a ticket.
X-OTRS-Ignore: Yes or True If this X-OTRS header is set to

"Yes", the incoming message

The ADMIN area of OTRS

76

Name Possible values Description
will completely be ignored and
never delivered to the system.

X-OTRS-State: new, open, closed successful,
closed unsuccessful, ...

Sets the next state of the ticket.

X-OTRS-State-PendingTime: e. g. 2010-11-20 00:00:00 Sets the pending time of a
ticket (you also should sent
a pending state via X-OTRS-
State).

X-OTRS-Type: default (depends on your
setup)

Sets the type of a ticket (if
Ticket::Type support is active).

X-OTRS-Service: (depends on your setup) Sets the service of a ticket
(if Ticket::Service support is
active).

X-OTRS-SLA: (depends on your setup) Sets the SLA of a ticket
(if Ticket::Service support is
active).

X-OTRS-CustomerUser: CustomerUser Sets the customer user for the
ticket.

X-OTRS-CustomerNo: CustomerNo Sets the customer ID for this
ticket.

X-OTRS-SenderType: agent, system, customer Sets the type of the ticket
sender.

X-OTRS-ArticleType: email-external, email-internal,
email-notification-ext, email-
notification-int, phone, fax,
sms, webrequest, note-
internal, note-external, note-
report

Sets the article type for the
incoming ticket.

X-OTRS-DynamicField-
<DynamicFieldName>:

Depends on Dynamic Field
configuration (Text: Notebook,
Date: 2010-11-20 00:00:00,
Integer: 1)

Saves an additional info
value for the ticket
on <DynamicFieldName>
Dynamic Field.

X-OTRS-Loop: True If this X-OTRS header is set,
no auto answer is delivered
to the sender of the message
(mail loop protection).

A name must be specified for every filter rule. Filter criteria can be specified in the section "Filter
Condition". Choose via the listboxes for "Header 1", "Header 2" and so on for the parts of the
messages where you would like to search, and specify on the right side the values you wish to
filter on. In the section "Set Email Headers", you can choose the actions that are triggered if the
filter rules match. You can select for "Header 1", "Header 2" and so on to select the X-OTRS-
Header and set the associated values (see Figure below).

The ADMIN area of OTRS

77

Figure: Add a PostMaster filter.

Example 5.1. Sort spam mails into a specific queue

A useful filter rule could be to let OTRS automatically move mails marked for spam with a spam
detection tool such as SpamAssassin, into the "Junk" queue. SpamAssassin adds the "X-Spam-
Flag" header to every checked mail. When the mail is marked as spam, the Header is set to
"Yes". So the filter criteria would be "X-Spam-Flag: Yes". To create a filter rule with this criteria
you can insert the name as, for example, "spam-mails". In the section for "Filter Condition",
choose "X-Spam-Flag:" for "Header 1" from the listbox. Insert "Yes" as value for this header.
Now the filter criteria is specified. To make sure that all spam mails get directed into the "Junk"
queue, choose in the section for "Set Email Headers", the "X-OTRS-Queue:" entry for "Header
1". Specify "Junk" as value for this header. Finally add the new filter rule to activate it for new
messages into the system.

There are additional modules, that can be used to filter incoming messages more specifically.
These modules might be useful on larger, more complex systems.

Executing automated jobs with the
GenericAgent

The GenericAgent is a tool to execute tasks automatically. In its absence such tasks would need
to be done by a human person, a real agent. The GenericAgent, for example, can close or move
tickets, send notifications on escalated tickets, etc.

Click the link "GenericAgent" on the Admin page (see Figure below). A table with currently
automated jobs is displayed which can be edited to switch to executing jobs manually, or
removing them.

The ADMIN area of OTRS

78

Figure: Job list for the GenericAgent.

Click the "Add job" button to create a new job. You first need to supply a name for the job, as
also the times when the job should be executed. Different criteria to select the tickets to work on
and the new properties of those tickets can also be set (see Figure below).

Figure: Creating a job for the GenericAgent.

On completing the job creation, all affected tickets by the job are listed. This list helps you verify
that the job has the expected behavior. No changes are made to these tickets yet. The job will
actually be activated only when it is saved into the job list.

Admin email
OTRS administrators can send messages to specific users or groups. The "Admin Notification"
link on the Admin page opens the screen where the agents and groups that should be notified
can be selected (see Figure below).

The ADMIN area of OTRS

79

Figure: Admin notification.

It is possible to specify the sender, subject and body text of the notification. You can also select
the agents, groups and roles who should receive the message.

Session management
You can see all logged in users and their session details by clicking the "Session Management"
link in the admin area (see Figure below).

Figure: Session management.

Some statistics about all active sessions are displayed, e.g. how many agents and customer
users are logged in, number of active sessions. Any individual session can be removed by clicking
on the Kill this session link on the right-hand side of the list. You also have the option to Kill all
sessions, which can be useful if you'd like to bring the system down. Detailed information for
every session is available, too (see Figure below).

The ADMIN area of OTRS

80

Figure: Session details.

System Log
The "System Log" link on the Admin page shows the log entries of the system, reverse
chronologically sorted with most recent first (see Figure below).

Figure: System Log.

Each line in the log contains a time stamp, the log priority, the system component and the log
entry itself.

Note
System logs are available via the web interface only on Linux / Unix systems. On
Windows systems, you can see the logs using a text editor and opening the file
[install_dir]otrs\var\log\otrs.log.

The ADMIN area of OTRS

81

SQL queries via the SQL box
The "SQL Box" link on the Admin page opens a screen that lets you query the content of the
tables in the OTRS database (see Figure below). It is not possible to change the content of the
tables, only select queries are allowed.

Figure: SQL Box.

Package Manager
Using the "Package Manager" link on the Admin page, you can install and manage packages
that extend the functionality of OTRS (see Figure below). See the Additional applications section
for a discussion on the extensions that are available from the OTRS repositories.

Figure: Package Manager.

The Package Manager shows the OTRS addon packages you currently have installed on your
server, together with their version numbers.

The ADMIN area of OTRS

82

You can install packages from a remote host by selecting the repository in the Online Repository
section, and clicking the Update repository information button. The available packages are
displayed in the corresponding table. The right side of the screen shows the available packages.
To install a package, click on Install. After installation, the package is displayed in the Local
Repository section.

To upgrade an installed package, the list of available packages in the online repository will show
Upgrade in the Action column for any package that has a higher version than the one locally
installed. Just click Upgrade and it will install the upgrade on your system.

In some cases, such as when your OTRS system is not connected to the Internet, you can
also install packages you have downloaded to a local disk. Click the Browse button on the
Actions side bar, and select the .opm file on your disk. Click Open and then Install Package.
After installation the package is displayed in the Local Repository section. You can use the same
steps for updating a package that is already installed.

In special cases, you might want to configure the Package Manager, e.g., to use a proxy
or to use a local repository. Just take a look at the available options in SysConfig under
Framework:Core::Package.

Web Services
The Web Services link leads to the graphical interface where web services (for the OTRS Generic
Interface) are created and maintained (see Figure below).

Figure: The graphical interface for web services.

The ADMIN area of OTRS

83

The graphical interface for web services configuration is described in more detail in the section
"Web Service Graphical Interface".

Dynamic Fields
Dynamic Fields is the place where you setup an manage custom fields for tickets and articles
(see figure below).

Figure: The dynamic fields overview screen with some dynamic fields.

The dynamic fields configuration is described in more detail in the section "Dynamic Fields
Configuration".

Each dynamic field type has its own configuration settings and therefore its own configuration
screen.

Note
In the OTRS framework, dynamic fields can only be linked to tickets and articles by
default, but they can be extended to other objects as well.

84

Chapter 6. System Configuration
OTRS config files

All OTRS configuration files are stored in the directory Kernel and in its subdirectories. There
is no need to manually change any other file than Kernel/Config.pm, because the rest of the
files will be changed when the system gets upgraded. Just copy the configuration parameters
from the other files into Kernel/Config.pm and change them as per your needs. This file will
never be touched during the upgrade process, so your manual settings are safe.

The file Kernel/Config/Defaults.pm contains the parameters of the central OTRS
framework. It defines all basic system settings such as the mail configuration, database
connection, default charset and standard language. The file Kernel/Config/Files/
Ticket.pm contains all configuration parameters for the trouble ticket system.

In the directory Kernel/Config/Files there are some other files that are parsed when the
OTRS login page is accessed. If additional applications like the FAQ or the File Manager are
installed, the configuration files for those can also be found in the mentioned path.

If the OTRS web interface is accessed, all .xml files in the Kernel/Config/Files directory
are parsed in alphabetical order, and the settings for the central framework and additional
applications will be loaded. Afterwards, the settings in the two files Kernel/Config/Files/
ZZZAAuto.pm and Kernel/Config/Files/ZZZAuto.pm will be evaluated. Both files are
used by the graphical interface for system configuration and should never be changed manually.
Lastly, the file Kernel/Config.pm that contains your individual settings and manually changed
configuration parameters, will be parsed. Reading the configuration files in this order makes sure
that your specific configuration settings are used by the system.

Configuring the system through the web
interface

Since OTRS 2.0, nearly all configuration parameters of the central framework or additional
installed applications, can be changed easily with the graphical interface for system configuration.
Log in as OTRS administrator and follow the SysConfig link on the Admin page to execute the
new configuration tool (see Figure below).

System Configuration

85

Figure: The graphical interface for system configuration.

OTRS currently has over 600 configuration parameters, and there are different ways to quickly
access a specific one. With the full text search, all configuration parameters can be scanned
for one or more keywords. The full text search not only searches through the names of the
configuration parameters, but also through the descriptions of the parameters. This allows an
element to be found easily even if its name is unknown.

Furthermore, all configuration parameters are sorted in main groups and sub groups. The main
group represents the application that the configuration parameter belongs to, e.g. "Framework"
for the central OTRS framework, "Ticket" for the ticket system, "FAQ" for the FAQ system, and
so on. The sub groups can be accessed if the application is selected from the groups listbox and
the "Select group" button is pressed.

Every configuration parameter can be turned on or off via a checkbox. If the parameter is turned
off, the system will ignore this parameter or use a default. It is possible to switch a changed
configuration parameter back to the system default using the Reset link. The Update button
submits all changes to system configuration parameters.

If you want to save all the changes you made to your system's configuration, for example to setup
a new installation quickly, you can use the "Export settings" button, which will create a .pm file.
To restore your own settings, just press the "Import settings" and select the .pm created before.

Note
For security reasons, the configuration parameters for the database connection cannot
be changed in the SysConfig section. They have to be set manually in Kernel/
Config.pm.

86

Chapter 7. Sending/Receiving emails
Sending emails
Via Sendmail (default)

OTRS can send out emails via Sendmail [http://www.sendmail.org/], Postfix [http://
www.postfix.org/], Qmail [http://www.qmail.org] or Exim [http://www.exim.org]). The default
configuration is to use Sendmail and should work out-of-the-box.

You can configure the sendmail settings via the graphical configuration frontend
(Framework::Core::Sendmail)

Via SMTP server or smarthost
OTRS can send emails via SMTP (Simple Mail Transfer Protocol / RFC 821 [http://www.ietf.org/
rfc/rfc821.txt]) or Secure SMTP. You will want to use this on non-UNIX platforms (e.g. Windows).

The SMTP server settings can be configured via the SysConfig (Framework::Core::Sendmail).
If you don't see SMTPS available as an option, the required Perl modules are missing. In that
case, please refer to "Installation of Perl modules required for OTRS" for instructions.

Receiving emails
Mail accounts configured via the OTRS GUI

OTRS is able to receive emails from POP3, POP3S, IMAP, and IMAPS mail accounts.

Configure your mail accounts via the PostMaster Mail Accounts link on the Admin page.

If a new mail account is to be created (see Figure below), then it's mail server name, login name
and password must be specified. Also, you need to select the mail server type, which can be
POP3, POP3S, IMAP or IMAPS. If you don't see your server type available as an option, the
required Perl modules are missing on your system. In that case, please refer to "Installation of
Perl modules required for OTRS" for instructions.

http://www.sendmail.org/
http://www.sendmail.org/
http://www.postfix.org/
http://www.postfix.org/
http://www.postfix.org/
http://www.qmail.org
http://www.qmail.org
http://www.exim.org
http://www.exim.org
http://www.ietf.org/rfc/rfc821.txt
http://www.ietf.org/rfc/rfc821.txt
http://www.ietf.org/rfc/rfc821.txt

Sending/Receiving emails

87

Figure: Adding a mail account.

If you select Yes for the value of the Trusted option, any X-OTRS headers attached to an
incoming message are evaluated and executed. Because the X-OTRS header can execute some
actions in the ticket system, you should set the Trusted option to Yes only for known senders.
X-OTRS-Headers are used by the filter module in OTRS. The X-OTRS headers are explained
in this table in more detail. Any postmaster filter rules created are executed, irrespective of the
Trusted option's setting.

The distribution of incoming messages can be controlled if they need to be sorted by queue or
by the content of the "To:" field. For the Dispatching field, if "Dispatching by selected queue" is
selected, all incoming messages will be sorted into the specified queue. The address where the
mail was sent to is disregarded in this case. If "Dispatching by email To: field" is selected, the
system checks if a queue is linked with the address in the To: field of the incoming mail. You
can link an address to a queue in the E-mail address management section of the Admin page.
If the address in the To: field is linked with a queue, the new message will be sorted into the
linked queue. If no link is found between the address in the To: field and any queue, then the
message flows into the "Raw" queue in the system, which is the PostmasterDefaultQueue after
a default installation.

All data for the mail accounts are saved in the OTRS database. The
otrs.PostMasterMailbox.pl script, which is located in the bin directory of your OTRS
installation, uses the settings in the database and fetches the mail. You can execute ./bin/
otrs.PostMasterMailbox.pl manually to check if all your mail settings are working properly.

On a normal installation, the mail will be fetched every 10 minutes by the postmaster_mailbox
cron job. For further information about modifying cron jobs, please refer to the "Setting up the
cron jobs for OTRS" section.

Note
When fetching mail, OTRS deletes the mail from the POP or IMAP server. There is no
option to also keep a copy on the server. If you want to retain a copy on the server,
you should create forwarding rules on your mail server. Please consult your mail server
documentation for details.

Sending/Receiving emails

88

Via command line program and procmail
(otrs.PostMaster.pl)

If you cannot use mail accounts to get the email into OTRS, the command line program bin/
otrs.PostMaster.pl might be a way around the problem. It takes the mails via STDIN and
pipes them directly into OTRS. That means email will be available in your OTRS system if the
MDA (mail delivery agent, e.g. procmail) executes this program.

To test bin/otrs.PostMaster.pl without an MDA, execute the command of the following
script.

linux:/opt/otrs# cd bin
linux:/opt/otrs/bin# cat ../doc/sample_mails/test-email-1.box | ./
otrs.PostMaster.pl
linux:/opt/otrs/bin#

Script: Testing PostMaster without the MDA.

If the email is shown in the QueueView, then your setup is working.

Procmail is a very common e-mail filter in Linux environments. It is installed on most systems. If
not, have a look at the procmail homepage [http://www.procmail.org/].

To configure procmail for OTRS (based upon a procmail configured MTA such as sendmail,
postfix, exim or qmail), use the ~otrs/.procmailrc.dist file and copy it to .procmailrc
and add the lines of the script below.

SYS_HOME=$HOME
PATH=/bin:/usr/bin:/usr/local/bin
--
Pipe all email into the PostMaster process.
--
:0 :
| $SYS_HOME/bin/otrs.PostMaster.pl

Script: Configuring procmail for OTRS.

All email sent to the local OTRS user will be piped into bin/otrs.PostMaster.pl and then
shown in your QueueView.

Fetching emails via POP3 or IMAP and fetchmail for
otrs.PostMaster.pl

In order to get email from your mail server, via a POP3 or IMAP mailbox, to the OTRS machine/
local OTRS account and to procmail, use fetchmail [http://fetchmail.berlios.de/].

Note
A working SMTP configuration on the OTRS machine is required.

You can use the .fetchmailrc.dist in the home directory of OTRS and copy it to
.fetchmailrc. Modfiy/change it for your needs (see the Example 7-1 below).

http://www.procmail.org/
http://www.procmail.org/
http://fetchmail.berlios.de/
http://fetchmail.berlios.de/

Sending/Receiving emails

89

Example 7.1. .fetchmailrc

#poll (mailserver) protocol POP3 user (user) password (password) is
 (localuser)
poll mail.example.com protocol POP3 user joe password mama is otrs

Don't forget to set the .fetchmailrc to 710 ("chmod 710 .fetchmailrc")!

With the .fetchmailrc from the Example 7-1 above, all email will be forwarded to the local
OTRS account, if the command fetchmail -a is executed. Set up a cronjob with this command
if you want to fetch the mails regularly.

Filtering/dispatching by OTRS/PostMaster modules (for
more complex dispatching)

If you use the bin/otrs.PostMaster.pl or bin/otrs.PostMasterMailbox.pl method, you can insert or
modify X-OTRS header entries with the PostMaster filter modules. With the X-OTRS headers,
the ticket system can execute some actions on incoming mails, sort them into a specific queue,
change the priority or change the customer ID, for example. More information about the X-OTRS
headers are available in the section about adding mail accounts from the OTRS Admin page.

There are some default filter modules:

Note
The job name (e.g. $Self->{'PostMaster::PreFilterModule'}->{'JobName'}) needs to be
unique!

Kernel::System::PostMaster::Filter::Match is a default module to match on some email header
(e.g. From, To, Subject, ...). It can set new email headers (e.g. X-OTRS-Ignore: yes or X-OTRS-
Queue: spam) if a filter rule matches. The jobs of the Example 7-2 can be inserted in Kernel/
Config.pm

Example 7.2. Example jobs for the filter module
Kernel::System::PostMaster::Filter::Match

 # Job Name: 1-Match
 # (block/ignore all spam email with From: noreply@)
 $Self->{'PostMaster::PreFilterModule'}->{'1-Match'} = {
 Module => 'Kernel::System::PostMaster::Filter::Match',
 Match => {
 From => 'noreply@',
 },
 Set => {
 'X-OTRS-Ignore' => 'yes',
 },
 };
 # Job Name: 2-Match
 # (sort emails with From: sales@example.com and Subject: **ORDER**
 # into queue 'Order')
 $Self->{'PostMaster::PreFilterModule'}->{'2-Match'} = {

Sending/Receiving emails

90

 Module => 'Kernel::System::PostMaster::Filter::Match',
 Match => {
 To => 'sales@example.com',
 Subject => '**ORDER**',
 },
 Set => {
 'X-OTRS-Queue' => 'Order',
 },
 };

Kernel::System::PostMaster::Filter::CMD is a default module to pipe the email into an external
command. The output is given to STDOUT and if the result is true, then set new email header
(e.g. X-OTRS-Ignore: yes or X-OTRS-Queue: spam). The Example 7-3 can be used in Kernel/
Config.pm

Example 7.3. Example job for the filter module
Kernel::System::PostMaster::Filter::CMD

 # Job Name: 5-SpamAssassin
 # (SpamAssassin example setup, ignore spam emails)
 $Self->{'PostMaster::PreFilterModule'}->{'5-SpamAssassin'} = {
 Module => 'Kernel::System::PostMaster::Filter::CMD',
 CMD => '/usr/bin/spamassassin | grep -i "X-Spam-Status: yes"',
 Set => {
 'X-OTRS-Ignore' => 'yes',
 },
 };

Of course it's also possible to develop your own PostMaster filter modules.

91

Chapter 8. Time related functions
Setting up business hours, holidays and time
zones

Some functions in OTRS, like escalations and automatic unlocking of tickets, depend on a proper
configuration of business hours, time zones and holidays. You can define these via the SysConfig
interface, in Framework > Core::Time. You can also specify different sets of business hours,
holidays and time zones as separate 'Calendars' in Framework > Core::Time::Calendar1 through
Framework > Core::Time::Calendar9. Calendars can be defined by queue settings, or on SLA
levels. This means that, for example, you can specify a calendar with 5 x 8 business hours for
your 'standard' SLA, but create a separate calendar with 7 x 24 support for your 'gold' SLA;
as well as set a calendar for your 'Support-USA' queue with a different time window than your
'Support-Japan' queue. OTRS can handle up to 99 different calendars.

Business Hours
Set up the working hours for your system in SysConfig Framework >
Core::Time::TimeWorkingHours, or for your specific calendar in the calendar's configuration.
OTRS can handle a granularity of one hour. Checking the marks in the boxes 8, 9, 10 ... 18
corresponds with business hours of 8 AM - 6 PM.

Only during business hours can tickets escalate, notifications for escalated and pending tickets
be sent, and tickets be unlocked.

Fixed date holidays
Holidays that are on a fixed date every year, such as New Year's Day or the Fourth of July, can
be specified in TimeVacationDays, or in the corresponding section for the calendars 1-9.

Tickets will not escalate nor get unlocked on dates defined in TimeVacationDays.

Note
By default, OTRS ships with the German holidays installed.

TimeVacationDaysOneTime
Holidays such as Easter that do not have a yearly fixed date but instead vary each year, can be
specified in TimeVacationDaysOneTime.

Tickets will not escalate and will not be unlocked on dates defined in
TimeVacationDaysOneTime.

Note
OTRS does not ship with any One-Time holidays pre-installed. This means that you need
to add holidays, such as Easter or Thanksgiving, to the system when configuring OTRS.

Time related functions

92

Automated Unlocking
Locked tickets can be automatically unlocked by the system. This feature might be useful if, for
example, an agent has locked tickets that need to be processed, but he can't work on them
for some reason, say because he is out of the office on an emergency. The automated unlock
feature unlocks tickets after a given time to ensure that no locked tickets will be forgotten, thereby
allowing other agents to process them.

The amount of time before a ticket is unlocked can be specified in the queue settings for every
queue. The module bin/otrs.UnlockTickets.pl, which is executed periodically as a cron
job, performs the automated unlocking of tickets.

Notifications on unlocked tickets are sent out only to those agents that have the queue with the
unlocked tickets set in "My queues", and that have activated the notification on unlocked tickets
in their personal preferences.

Tickets will be unlocked if all of the following conditions are met:

• There is an unlock timeout defined for the queue the ticket is in.

• The ticket is set to locked.

• The ticket state is open.

The unlock timer will be reset if an agent adds a new external article to the ticket. It can be of
any of the following types: email-external, phone, fax, sms, or note-external.

Also, if the last article in the ticket is created by an agent, and a customer adds another one,
either via web or email response, the unlock timer will be reset.

The last event that will reset the unlock timer is when the ticket is assigned to another agent.

93

Chapter 9. Ticket Responsibility &
Ticket Watching

From OTRS 2.1 on, it is possible to assign a person as being responsible for a ticket, additionally
to its owner. Moreover, all activities connected with the ticket can be watched by someone other
than the ticket owner. These two functionalities are implemented with the TicketResponsible and
TicketWatcher features, and facilitate the assignment of tasks and working within hierarchical
team structures.

Ticket Responsibility
The ticket responsiblility feature facilitates the complete processing of a ticket by an agent other
than the ticket owner. Thus an agent who has locked a ticket can pass it on to another agent, who
is not the ticket owner, in order for the second to respond to a customer request. After the request
has been dealt with, the first agent can withdraw the ticket responsibility from the second agent.

With the configuration parameter Ticket::Responsible, the ticket responsibility feature can be
activated. This will cause 3 new links to appear in the ticket activities menu of a zoomed ticket
in the agent interface.

Ticket responsibility can be assigned by calling up the ticket content and clicking on the
"Responsible" link in the ticket activities menu of a zoomed ticket in the agent interface (see the
Figure below).

Figure: Changing the Responsibility of a ticket in its zoomed view.

After clicking on "Responsible", a pop-up dialog to change the responsibility of that ticket will
open (see Figure below). This dialog can also be used to send a message to the new responsible
agent.

Ticket Responsibility
& Ticket Watching

94

Figure: Pop-up dialog to change a ticket's responsibility.

The list of all tickets for which an agent is responsible, can be accessed through the Responsible
view of the OTRS agent interface, as soon as the ticket responsibility feature gets activated.

Ticket watching
From OTRS 2.1 on, select agents such as supervisors can watch certain tickets within the system
without processing them, by using the TicketWatcher feature.

The TicketWatcher feature can be activated with the configuration parameter Ticket::Watcher
which adds new links to your actions toolbar. Using Ticket::WatcherGroup, one or more user
groups with permission to watch tickets can also be defined.

In order to watch a ticket, go to its zoomed view and click on the "Subscribe" link in the ticket
activities menu (see Figure below).

Figure: Subscribing to watching a ticket in its zoomed view.

If you no longer want to watch a specific ticket, go to its zoomed view and click on the
"Unsubscribe" link in the ticket activities menu (see Figure below).

Ticket Responsibility
& Ticket Watching

95

Figure: Unsubscribing from watching a ticket in its zoomed view.

The list of all watched tickets can be accessed through the Watched view of the OTRS agent
interface (see Figure below), as soon as the ticket watcher feature gets activated.

Figure: Watched tickets view.

96

Chapter 10. Customizing the PDF
output

This section handles the configurable options for PDF output in OTRS.

If you use the Print action from anywhere within the OTRS interface, this generates a formatted
PDF file. You can deactivate this by modifying the configuration parameter PDF to create HTML
output instead.

You can adjust the look of the files generated by OTRS by creating your own logo and adding it
to PDF::LogoFile. You can use PDF::PageSize to define the standard page size of the generated
pdf file (DIN-A4 or Letter), and also PDF::MaxPage to specify the maximum number of pages for
a pdf file, which is useful if a user generates a huge output file by mistake.

The Perl CPAN modules PDF::API2 and Compress::Zlib must be installed for the generation
of pdf files. In many distributions they are available as packages and can be easily installed,
using the respective package manager. In case this is not possible, they have to be installed
with CPAN. For further information about installing Perl modules, please refer to the "Installation
of Perl modules" section.

97

Chapter 11. Using external backends
Customer data

OTRS works with many customer data attributes such as username, email address, phone
number, etc. These attributes are displayed in both the Agent and the Customer frontends, and
also used for the authentication of customers.

Customer data used or displayed within OTRS is highly customizable. The following information
is however always needed for customer authentication:

• User login

• Email address

• Customer ID

Use configuration parameters of the following script in your Kernel/Config.pm file, if you want
to display customer information in your agent interface.

 # Ticket::Frontend::CustomerInfo*
 # (show customer info on Compose (Phone and Email), Zoom and
 # Queue view)
 $Self->{'Ticket::Frontend::CustomerInfoCompose'} = 1;
 $Self->{'Ticket::Frontend::CustomerInfoZoom'} = 1;
 $Self->{'Ticket::Frontend::CustomerInfoQueue'} = 0;

Script: Kernel/Config.pm configuration parameters.

Customer user backend
You can use two types of customer backends, DB and LDAP. If you already have another
customer backend (e.g. SAP), it is of course possible to write a module that uses it.

Database (Default)
Example 11-1 shows the configuration of a DB customer backend, which uses customer data
stored in the OTRS database.

Example 11.1. Configuring a DB customer backend

CustomerUser (customer database backend and settings)
$Self->{CustomerUser} = {
 Name => 'Database Datasource',
 Module => 'Kernel::System::CustomerUser::DB',
 Params => {
 # if you want to use an external database, add the required
 settings
DSN => 'DBI:odbc:yourdsn',
DSN =>
 'DBI:mysql:database=customerdb;host=customerdbhost',

Using external backends

98

User => '',
Password => '',
 Table => 'customer_user',
 # if your frontend is unicode and the charset of your
 # customer database server is iso-8859-1, use these
 options.
SourceCharset => 'iso-8859-1',
DestCharset => 'utf-8',

 # CaseSensitive will control if the SQL statements need
 LOWER()
 # function calls to work case insensitively. Setting
 this to
 # 1 will improve performance dramatically on large
 databases.
 CaseSensitive => 0,
 },
customer unique id
CustomerKey => 'login',

customer
CustomerID => 'customer_id',
CustomerValid => 'valid_id',
 CustomerUserListFields => ['first_name', 'last_name', 'email'],
 CustomerUserSearchFields => ['login', 'last_name', 'customer_id'],
 CustomerUserSearchPrefix => '',
 CustomerUserSearchSuffix => '*',
 CustomerUserSearchListLimit => 250,
 CustomerUserPostMasterSearchFields => ['email'],
 CustomerUserNameFields => ['title','first_name','last_name'],
 CustomerUserEmailUniqCheck => 1,
show not own tickets in customer panel, CompanyTickets
CustomerUserExcludePrimaryCustomerID => 0,
generate auto logins
AutoLoginCreation => 0,
AutoLoginCreationPrefix => 'auto',
admin can change customer preferences
AdminSetPreferences => 1,
cache time to live in sec. - cache any database queries
CacheTTL => 0,
just a read only source
ReadOnly => 1,
 Map => [
 # note: Login, Email and CustomerID needed!
 # var, frontend, storage, shown (1=always,2=lite), required,
 storage-type, http-link, readonly, http-link-target
 ['UserTitle', 'Title', 'title', 1, 0, 'var',
 '', 0],
 ['UserFirstname', 'Firstname', 'first_name', 1, 1, 'var',
 '', 0],
 ['UserLastname', 'Lastname', 'last_name', 1, 1, 'var',
 '', 0],
 ['UserLogin', 'Username', 'login', 1, 1, 'var',
 '', 0],

Using external backends

99

 ['UserPassword', 'Password', 'pw', 0, 0, 'var',
 '', 0],
 ['UserEmail', 'Email', 'email', 1, 1, 'var',
 '', 0],

['UserEmail', 'Email', 'email', 1, 1, 'var',
 '$Env{"CGIHandle"}?Action=AgentTicketCompose&ResponseID=1&TicketID=
$Data{"TicketID"}&ArticleID=$Data{"ArticleID"}', 0],
 ['UserCustomerID', 'CustomerID', 'customer_id', 0, 1, 'var',
 '', 0],

['UserCustomerIDs', 'CustomerIDs', 'customer_ids', 1, 0,
 'var', '', 0],
 ['UserPhone', 'Phone', 'phone', 1, 0,
 'var', '', 0],
 ['UserFax', 'Fax', 'fax', 1, 0,
 'var', '', 0],
 ['UserMobile', 'Mobile', 'mobile', 1, 0,
 'var', '', 0],
 ['UserStreet', 'Street', 'street', 1, 0,
 'var', '', 0],
 ['UserZip', 'Zip', 'zip', 1, 0,
 'var', '', 0],
 ['UserCity', 'City', 'city', 1, 0,
 'var', '', 0],
 ['UserCountry', 'Country', 'country', 1, 0,
 'var', '', 0],
 ['UserComment', 'Comment', 'comments', 1, 0,
 'var', '', 0],
 ['ValidID', 'Valid', 'valid_id', 0, 1,
 'int', '', 0],
],
 # default selections
 Selections => {
 UserTitle => {
 'Mr.' => 'Mr.',
 'Mrs.' => 'Mrs.',
 },
 },
};

If you want to customize the customer data, change the column headers or add new ones to the
customer_user table in the OTRS database. As an example, the script below shows how to add
a new field for room number.

linux:~# mysql -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 116 to server version: 5.0.18-Debian_7-log

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> use otrs;

Using external backends

100

Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql> ALTER TABLE customer_user ADD room VARCHAR (250);
Query OK, 1 rows affected (0.01 sec)
Records: 1 Duplicates: 0 Warnings: 0

mysql> quit
Bye
linux:~#

Script: Adding a room field to the customer_user table.

Now add the new column to the MAP array in Kernel/Config.pm, as shown in the following
script.

 # var, frontend, storage, shown (1=always,2=lite), required,
 storage-type, http-link, readonly
 [...]
 ['UserRoom', 'Room', 'room', 0, 1, 'var', '',
 0],

Script: Adding a room field to the Kernel/Config.pm file.

It is also possible to edit all this customer information via the Customers link in the Agent interface.

Customer with multiple IDs (Company tickets)
It is possible to assign more than one customer ID to a customer. This can be useful if a
customer must access tickets of other customers, e.g. a supervisor wants to watch the tickets
of his assistants. If a customer can access the tickets of another customer, the company ticket
feature of OTRS is used. Company tickets can be accessed via the "Company Tickets" link in
the customer panel.

To use company tickets, a new column with the IDs that should be accessible for a customer,
has to be added to the customer_user table in the OTRS database (see Script below).

linux:~# mysql -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 124 to server version: 5.0.18-Debian_7-log

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> use otrs;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql> ALTER TABLE customer_user ADD customer_ids VARCHAR (250);
Query OK, 1 rows affected (0.02 sec)
Records: 1 Duplicates: 0 Warnings: 0

Using external backends

101

mysql> quit
Bye
linux:~#

Script: Adding a customer_ids field to the customer_user table.

Now the new column has to be added to the MAP array in Kernel/Config.pm, as shown in
the script below.

 # var, frontend, storage, shown (1=always,2=lite), required,
 storage-type, http-link, readonly
 [...]
 ['UserCustomerIDs', 'CustomerIDs', 'customer_ids', 1, 0, 'var',
 '', 0],

Script: Adding a UserCustomerIDs field to the Kernel/Config.pm file.

Now, the new column for the multiple customer IDs can be edited via the Agent interface, in the
section for the customer management.

To ensure that one customer can access the tickets of other customers, add the IDs of these
other users into the new field for the multiple customer IDs. Each ID has to be separated by a
semicolon (see Example 11-2 below).

Example 11.2. Using company tickets with a DB backend

The customers A, B and C exist in your system, and A wants to have access to the tickets of B
and C via the customer panel. B and C should have no access to the tickets of other users.

To realize this setup, change the customer_user table and the mapping in Kernel/Config.pm
as described above. Then load the settings for customer A via the Customers link in the Agent
interface or via the Admin page. If the settings are displayed, add into the field for CustomerIDs
the values "B;C;".

LDAP
If you have a LDAP directory with your customer data, you can use it as the customer backend
with OTRS, as shown in Example 11-3.

Example 11.3. Configuring an LDAP customer backend

CustomerUser
(customer ldap backend and settings)
$Self->{CustomerUser} = {
 Name => 'LDAP Data Source',
 Module => 'Kernel::System::CustomerUser::LDAP',
 Params => {
 # ldap host
 Host => 'bay.csuhayward.edu',
 # ldap base dn
 BaseDN => 'ou=seas,o=csuh',

Using external backends

102

 # search scope (one|sub)
 SSCOPE => 'sub',
 # The following is valid but would only be necessary if the
 # anonymous user does NOT have permission to read from the
 LDAP tree
 UserDN => '',
 UserPw => '',
 # in case you want to add always one filter to each ldap
 query, use
 # this option. e. g. AlwaysFilter => '(mail=*)' or
 AlwaysFilter => '(objectclass=user)'
 AlwaysFilter => '',
 # if both your frontend and your LDAP are unicode, use
 this:
 SourceCharset => 'utf-8',
 DestCharset => 'utf-8',
 # if your frontend is unicode and the charset of your
 # ldap server is iso-8859-1, use these options.
 # SourceCharset => 'iso-8859-1',
 # DestCharset => 'utf-8',
 # Net::LDAP new params (if needed - for more info see
 perldoc Net::LDAP)
 Params => {
 port => 389,
 timeout => 120,
 async => 0,
 version => 3,
 },
 },
 # customer unique id
 CustomerKey => 'uid',
 # customer #
 CustomerID => 'mail',
 CustomerUserListFields => ['cn', 'mail'],
 CustomerUserSearchFields => ['uid', 'cn', 'mail'],
 CustomerUserSearchPrefix => '',
 CustomerUserSearchSuffix => '*',
 CustomerUserSearchListLimit => 250,
 CustomerUserPostMasterSearchFields => ['mail'],
 CustomerUserNameFields => ['givenname', 'sn'],
 # show not own tickets in customer panel, CompanyTickets
 CustomerUserExcludePrimaryCustomerID => 0,
 # add an ldap filter for valid users (expert setting)
CustomerUserValidFilter => '(!(description=locked))',
 # administrator can't change customer preferences
 AdminSetPreferences => 0,
cache time to live in sec. - cache any database queries
CacheTTL => 0,
 Map => [
 # note: Login, Email and CustomerID are mandatory!
 # var, frontend, storage, shown (1=always,2=lite), required,
 storage-type, http-link, readonly
 ['UserTitle', 'Title', 'title', 1, 0,
 'var', '', 0],

Using external backends

103

 ['UserFirstname', 'Firstname', 'givenname', 1, 1,
 'var', '', 0],
 ['UserLastname', 'Lastname', 'sn', 1, 1,
 'var', '', 0],
 ['UserLogin', 'Username', 'uid', 1, 1,
 'var', '', 0],
 ['UserEmail', 'Email', 'mail', 1, 1,
 'var', '', 0],
 ['UserCustomerID', 'CustomerID', 'mail', 0, 1,
 'var', '', 0],
['UserCustomerIDs', 'CustomerIDs', 'second_customer_ids', 1,
 0, 'var', '', 0],
 ['UserPhone', 'Phone', 'telephonenumber', 1, 0,
 'var', '', 0],
 ['UserAddress', 'Address', 'postaladdress', 1, 0,
 'var', '', 0],
 ['UserComment', 'Comment', 'description', 1, 0,
 'var', '', 0],
],
};

If additional customer attributes are stored in your LDAP directory, such as a manager's name, a
mobile phone number, or a department, and if you want to display this information in OTRS, just
expand the MAP array in Kernel/Config.pm with the entries for these attributes, as shown
in the following script.

 # var, frontend, storage, shown (1=always,2=lite), required,
 storage-type, http-link, readonly
 [...]
 ['UserPhone', 'Phone', 'telephonenumber', 1, 0, 'var',
 '', 0],

Script: Adding new fields to the Kernel/Config.pm file.

Customer with multiple IDs (Company tickets)
It is possible to assign more than one Customer ID to a customer, when using an LDAP backend.
To use company tickets, a new field has to be added to the LDAP directory that contains the
IDs accessible by the customer.

If the new field in the LDAP directory has been created, the new entry has to be added to the
MAP array in Kernel/Config.pm, as shown in the script below.

 # var, frontend, storage, shown (1=always,2=lite), required,
 storage-type, http-link, readonly
 [...]
 ['UserCustomerIDs', 'CustomerIDs', 'customer_ids', 1, 0, 'var',
 '', 0],

Script: Maping new fields to the Kernel/Config.pm file.

The field for the multiple customer IDs has to be edited directly in the LDAP directory. OTRS can
only read from LDAP, not write to it.

Using external backends

104

To ensure access by a customer to the tickets of other customers, add the customer IDs of the
customers whose tickets should be accessed to the new field in your LDAP directory. Each ID
has to be separated by a semicolon (see Example 11-4 below).

Example 11.4. Using Company tickets with an LDAP backend

The customers A, B and C exist in your system and A wants to have access to the tickets of B
and C via the customer panel. B and C should have no access to tickets of other users.

To realize this setup, change the LDAP directory and the mapping in Kernel/Config.pm as
described above. Then add into the field for CustomerIDs the values "B;C;" for customer A in
your LDAP directory.

Use more than one customer backend with OTRS
If you want to utilize more than one customer data source used with OTRS (e.g. an LDAP and
a database backend), the CustomerUser config parameter should be expanded with a number,
e.g. "CustomerUser1", "CustomerUser2" (see Example 11-5 below).

Example 11.5. Using more than one customer backend with OTRS

The following configuration example shows usage of both an LDAP and a database customer
backend with OTRS.

1. Customer user backend: DB
(customer database backend and settings)
$Self->{CustomerUser1} = {
 Name => 'Customer Database',
 Module => 'Kernel::System::CustomerUser::DB',
 Params => {
 # if you want to use an external database, add the
 # required settings
DSN => 'DBI:odbc:yourdsn',
DSN => 'DBI:mysql:database=customerdb;host=customerdbhost',
User => '',
Password => '',
 Table => 'customer_user',
 },
 # customer unique id
 CustomerKey = 'login',
 # customer #
 CustomerID = 'customer_id',
 CustomerValid = 'valid_id',
 CustomerUserListFields => ['first_name', 'last_name', 'email'],
 CustomerUserSearchFields => ['login', 'last_name', 'customer_id'],
 CustomerUserSearchPrefix => '',
 CustomerUserSearchSuffix => '*',
 CustomerUserSearchListLimit => 250,
 CustomerUserPostMasterSearchFields => ['email'],
 CustomerUserNameFields => ['title','first_name','last_name'],
 CustomerUserEmailUniqCheck => 1,
show not own tickets in customer panel, CompanyTickets
CustomerUserExcludePrimaryCustomerID => 0,

Using external backends

105

generate auto logins
AutoLoginCreation => 0,
AutoLoginCreationPrefix => 'auto',
admin can change customer preferences
AdminSetPreferences => 1,
cache time to live in sec. - cache any database queries
CacheTTL => 0,
just a read only source
ReadOnly => 1,
 Map => [

 # note: Login, Email and CustomerID needed!
 # var, frontend, storage, shown (1=always,2=lite), required,
 storage-type, http-link, readonly, http-link-target
 ['UserTitle', 'Title', 'title', 1, 0, 'var',
 '', 0],
 ['UserFirstname', 'Firstname', 'first_name', 1, 1, 'var',
 '', 0],
 ['UserLastname', 'Lastname', 'last_name', 1, 1, 'var',
 '', 0],
 ['UserLogin', 'Username', 'login', 1, 1, 'var',
 '', 0],
 ['UserPassword', 'Password', 'pw', 0, 0, 'var',
 '', 0],
 ['UserEmail', 'Email', 'email', 1, 1, 'var',
 '', 0],
 ['UserCustomerID', 'CustomerID', 'customer_id', 0, 1, 'var',
 '', 0],
 ['UserPhone', 'Phone', 'phone', 1, 0, 'var',
 '', 0],
 ['UserFax', 'Fax', 'fax', 1, 0, 'var',
 '', 0],
 ['UserMobile', 'Mobile', 'mobile', 1, 0, 'var',
 '', 0],
 ['UserStreet', 'Street', 'street', 1, 0, 'var',
 '', 0],
 ['UserZip', 'Zip', 'zip', 1, 0, 'var',
 '', 0],
 ['UserCity', 'City', 'city', 1, 0, 'var',
 '', 0],
 ['UserCountry', 'Country', 'country', 1, 0, 'var',
 '', 0],
 ['UserComment', 'Comment', 'comments', 1, 0, 'var',
 '', 0],
 ['ValidID', 'Valid', 'valid_id', 0, 1, 'int',
 '', 0],
],
 # default selections
 Selections => {
 UserTitle => {
 'Mr.' => 'Mr.',
 'Mrs.' => 'Mrs.',
 },
 },

Using external backends

106

};

2. Customer user backend: LDAP
(customer ldap backend and settings)
$Self->{CustomerUser2} = {
 Name => 'LDAP Datasource',
 Module => 'Kernel::System::CustomerUser::LDAP',
 Params => {
 # ldap host
 Host => 'bay.csuhayward.edu',
 # ldap base dn
 BaseDN => 'ou=seas,o=csuh',
 # search scope (one|sub)
 SSCOPE => 'sub',
The following is valid but would only be necessary if the
anonymous user does NOT have permission to read from the
 LDAP tree
 UserDN => '',
 UserPw => '',
 # in case you want to add always one filter to each ldap
 query, use
 # this option. e. g. AlwaysFilter => '(mail=*)' or
 AlwaysFilter => '(objectclass=user)'
 AlwaysFilter => '',
 # if both your frontend and your LDAP are unicode, use this:
SourceCharset => 'utf-8',
DestCharset => 'utf-8',
 # if your frontend is e. g. iso-8859-1 and the character set
 of your
 # ldap server is utf-8, use these options:
SourceCharset => 'utf-8',
DestCharset => 'iso-8859-1',

 # Net::LDAP new params (if needed - for more info see perldoc
 Net::LDAP)
 Params => {
 port => 389,
 timeout => 120,
 async => 0,
 version => 3,
 },
 },
 # customer unique id
 CustomerKey => 'uid',
 # customer #
 CustomerID => 'mail',
 CustomerUserListFields => ['cn', 'mail'],
 CustomerUserSearchFields => ['uid', 'cn', 'mail'],
 CustomerUserSearchPrefix => '',
 CustomerUserSearchSuffix => '*',
 CustomerUserSearchListLimit => 250,
 CustomerUserPostMasterSearchFields => ['mail'],
 CustomerUserNameFields => ['givenname', 'sn'],
 # show not own tickets in customer panel, CompanyTickets

Using external backends

107

 CustomerUserExcludePrimaryCustomerID => 0,
 # add a ldap filter for valid users (expert setting)
CustomerUserValidFilter => '(!(description=locked))',
 # admin can't change customer preferences
 AdminSetPreferences => 0,
 Map => [
 # note: Login, Email and CustomerID needed!
 # var, frontend, storage, shown (1=always,2=lite), required,
 storage-type, http-link, readonly
 ['UserTitle', 'Title', 'title', 1, 0,
 'var', '', 0],
 ['UserFirstname', 'Firstname', 'givenname', 1, 1,
 'var', '', 0],
 ['UserLastname', 'Lastname', 'sn', 1, 1,
 'var', '', 0],
 ['UserLogin', 'Username', 'uid', 1, 1,
 'var', '', 0],
 ['UserEmail', 'Email', 'mail', 1, 1,
 'var', '', 0],
 ['UserCustomerID', 'CustomerID', 'mail', 0, 1,
 'var', '', 0],
['UserCustomerIDs', 'CustomerIDs', 'second_customer_ids', 1,
 0, 'var', '', 0],
 ['UserPhone', 'Phone', 'telephonenumber', 1, 0,
 'var', '', 0],
 ['UserAddress', 'Address', 'postaladdress', 1, 0,
 'var', '', 0],
 ['UserComment', 'Comment', 'description', 1, 0,
 'var', '', 0],
],
};

It is possible to integrate up to 10 different customer backends. Use the customer management
interface in OTRS to view or edit (assuming write access is enabled) all customer data.

Backends to authenticate Agents and
Customers

OTRS offers the option to authenticate agents and customers against different backends.

Authentication backends for Agents
DB (Default)

The backend to authenticate agents which is used by default is the OTRS database. Agents
can be added and edited via the agent management interface in the Admin page (see Example
11-6 below).

Example 11.6. Authenticate agents against a DB backend

 $Self->{'AuthModule'} = 'Kernel::System::Auth::DB';

Using external backends

108

LDAP
If an LDAP directory has all your agent data stored, you can use the LDAP module to authenticate
your users in OTRS (see Example 11-7 below). This module has only read access to the LDAP
tree, which means that you cannot edit your user data via the agent management interface.

Example 11.7. Authenticate agents against an LDAP backend

This is an example configuration for an LDAP auth. backend.
(Make sure Net::LDAP is installed!)
$Self->{'AuthModule'} = 'Kernel::System::Auth::LDAP';
$Self->{'AuthModule::LDAP::Host'} = 'ldap.example.com';
$Self->{'AuthModule::LDAP::BaseDN'} = 'dc=example,dc=com';
$Self->{'AuthModule::LDAP::UID'} = 'uid';

Check if the user is allowed to auth in a posixGroup
(e. g. user needs to be in a group xyz to use otrs)
$Self->{'AuthModule::LDAP::GroupDN'} =
 'cn=otrsallow,ou=posixGroups,dc=example,dc=com';
$Self->{'AuthModule::LDAP::AccessAttr'} = 'memberUid';
for ldap posixGroups objectclass (just uid)
$Self->{'AuthModule::LDAP::UserAttr'} = 'UID';
for non ldap posixGroups objectclass (with full user dn)
$Self->{'AuthModule::LDAP::UserAttr'} = 'DN';

The following is valid but would only be necessary if the
anonymous user do NOT have permission to read from the LDAP tree
$Self->{'AuthModule::LDAP::SearchUserDN'} = '';
$Self->{'AuthModule::LDAP::SearchUserPw'} = '';

in case you want to add always one filter to each ldap query, use
this option. e. g. AlwaysFilter => '(mail=*)' or AlwaysFilter =>
 '(objectclass=user)'
$Self->{'AuthModule::LDAP::AlwaysFilter'} = '';

in case you want to add a suffix to each login name, then
you can use this option. e. g. user just want to use user but
in your ldap directory exists user@domain.
$Self->{'AuthModule::LDAP::UserSuffix'} = '@domain.com';

Net::LDAP new params (if needed - for more info see perldoc
 Net::LDAP)
$Self->{'AuthModule::LDAP::Params'} = {
 port => 389,
 timeout => 120,
 async => 0,
 version => 3,
};

The configuration parameters shown in the script below can be used to synchronize the user data
from your LDAP directory into your local OTRS database. This reduces the number of requests
to your LDAP server and speeds up the authentication with OTRS. The data synchronization
is done when the agent authenticates the first time. Although the data can be syncronized into

Using external backends

109

the local OTRS database, the LDAP directory is the last instance for the authentication, so an
inactive user in the LDAP tree can't authenticate to OTRS, even when the account data is already
stored in the OTRS database. The agent data in the LDAP directory can't be edited via the web
interface of OTRS, so the data has to be managed directly in the LDAP tree.

defines AuthSyncBackend (AuthSyncModule) for AuthModule
if this key exists and is empty, there won't be a sync.
example values: AuthSyncBackend, AuthSyncBackend2
$Self->{'AuthModule::UseSyncBackend'} = 'AuthSyncBackend';

agent data sync against ldap
$Self->{'AuthSyncModule'} = 'Kernel::System::Auth::Sync::LDAP';
$Self->{'AuthSyncModule::LDAP::Host'} = 'ldap://ldap.example.com/';
$Self->{'AuthSyncModule::LDAP::BaseDN'} = 'dc=otrs, dc=org';
$Self->{'AuthSyncModule::LDAP::UID'} = 'uid';
$Self->{'AuthSyncModule::LDAP::SearchUserDN'} = 'uid=sys, ou=user,
 dc=otrs, dc=org';
$Self->{'AuthSyncModule::LDAP::SearchUserPw'} = 'some_pass';
$Self->{'AuthSyncModule::LDAP::UserSyncMap'} = {
 # DB -> LDAP
 UserFirstname => 'givenName',
 UserLastname => 'sn',
 UserEmail => 'mail',
};
[...]

AuthSyncModule::LDAP::UserSyncInitialGroups
(sync following group with rw permission after initial create of
 first agent
login)
$Self->{'AuthSyncModule::LDAP::UserSyncInitialGroups'} = [
 'users',
];

Script: Synchronizing the user data from the LDAP directory into the OTRS database.

HTTPBasicAuth for Agents
If you want to implement a "single sign on" solution for all your agents, you can use HTTP basic
authentication (for all your systems) and the HTTPBasicAuth module for OTRS (see Example
11-8 below).

Example 11.8. Authenticate Agents using HTTPBasic

This is an example configuration for an apache ($ENV{REMOTE_USER})
auth. backend. Use it if you want to have a singe login through
apache http-basic-auth
$Self->{'AuthModule'} = 'Kernel::System::Auth::HTTPBasicAuth';

Note:
#
If you use this module, you should use as fallback
the following configuration settings if the user is not authorized

Using external backends

110

apache ($ENV{REMOTE_USER})
$Self->{LoginURL} = 'http://host.example.com/not-authorised-for-
otrs.html';
$Self->{LogoutURL} = 'http://host.example.com/thanks-for-using-
otrs.html';

Radius
The configuration parameters shown in Example 11-9 can be used to authenticate agents against
a Radius server.

Example 11.9. Authenticate Agents against a Radius backend

This is example configuration to auth. agents against a radius
 server
$Self->{'AuthModule'} = 'Kernel::System::Auth::Radius';
$Self->{'AuthModule::Radius::Host'} = 'radiushost';
$Self->{'AuthModule::Radius::Password'} = 'radiussecret';

Authentication backends for Customers
Database (Default)

The default user authentication backend for customers in OTRS is the OTRS database. With this
backend, all customer data can be edited via the web interface of OTRS (see Example 11-10
below).

Example 11.10. Customer user authentication against a DB backend

This is the auth. module againt the otrs db
$Self->{'Customer::AuthModule'} = 'Kernel::System::CustomerAuth::DB';
$Self->{'Customer::AuthModule::DB::Table'} = 'customer_user';
$Self->{'Customer::AuthModule::DB::CustomerKey'} = 'login';
$Self->{'Customer::AuthModule::DB::CustomerPassword'} = 'pw';
#$Self->{'Customer::AuthModule::DB::DSN'} =
 "DBI:mysql:database=customerdb;host=customerdbhost";
#$Self->{'Customer::AuthModule::DB::User'} = "some_user";
#$Self->{'Customer::AuthModule::DB::Password'} = "some_password";

LDAP
If you have an LDAP directory with all your customer data, you can use the LDAP module to
authenticate your customers to OTRS (see Example 11-11 below). Because this module has
only read-access to the LDAP backend, it is not possible to edit the customer data via the OTRS
web interface.

Example 11.11. Customer user authentication against an LDAP backend

This is an example configuration for an LDAP auth. backend.
(make sure Net::LDAP is installed!)
$Self->{'Customer::AuthModule'} =
 'Kernel::System::CustomerAuth::LDAP';

Using external backends

111

$Self->{'Customer::AuthModule::LDAP::Host'} = 'ldap.example.com';
$Self->{'Customer::AuthModule::LDAP::BaseDN'} = 'dc=example,dc=com';
$Self->{'Customer::AuthModule::LDAP::UID'} = 'uid';

Check if the user is allowed to auth in a posixGroup
(e. g. user needs to be in a group xyz to use otrs)
$Self->{'Customer::AuthModule::LDAP::GroupDN'} =
 'cn=otrsallow,ou=posixGroups,dc=example,dc=com';
$Self->{'Customer::AuthModule::LDAP::AccessAttr'} = 'memberUid';
for ldap posixGroups objectclass (just uid)
$Self->{'Customer::AuthModule::LDAP::UserAttr'} = 'UID';
for non ldap posixGroups objectclass (full user dn)
#$Self->{'Customer::AuthModule::LDAP::UserAttr'} = 'DN';

The following is valid but would only be necessary if the
anonymous user does NOT have permission to read from the LDAP tree
$Self->{'Customer::AuthModule::LDAP::SearchUserDN'} = '';
$Self->{'Customer::AuthModule::LDAP::SearchUserPw'} = '';

in case you want to add always one filter to each ldap query, use
this option. e. g. AlwaysFilter => '(mail=*)' or AlwaysFilter =>
 '(objectclass=user)'
$Self->{'Customer::AuthModule::LDAP::AlwaysFilter'} = '';

in case you want to add a suffix to each customer login name, then
you can use this option. e. g. user just want to use user but
in your ldap directory exists user@domain.
#$Self->{'Customer::AuthModule::LDAP::UserSuffix'} = '@domain.com';

Net::LDAP new params (if needed - for more info see perldoc
 Net::LDAP)
$Self->{'Customer::AuthModule::LDAP::Params'} = {
 port => 389,
 timeout => 120,
 async => 0,
 version => 3,
};

HTTPBasicAuth for customers
If you want to implement a "single sign on" solution for all your customer users, you can use
HTTPBasic authentication (for all your systems) and use the HTTPBasicAuth module with OTRS
(no login is needed with OTRS any more). See Example 11-12 below.

Example 11.12. Customer user authentication with HTTPBasic

This is an example configuration for an apache ($ENV{REMOTE_USER})
auth. backend. Use it if you want to have a singe login through
apache http-basic-auth
$Self->{'Customer::AuthModule'} =
 'Kernel::System::CustomerAuth::HTTPBasicAuth';

Note:

Using external backends

112

If you use this module, you should use the following
config settings as fallback, if user isn't login through
apache ($ENV{REMOTE_USER})
$Self->{CustomerPanelLoginURL} = 'http://host.example.com/not-
authorised-for-otrs.html';
$Self->{CustomerPanelLogoutURL} = 'http://host.example.com/thanks-for-
using-otrs.html';

Radius
The settings shown in Example 11-13 can be used to authenticate your customers against a
Radius server.

Example 11.13. Customer user authentication against a Radius backend

This is a example configuration to auth. customer against a radius
 server
$Self->{'Customer::AuthModule'} = 'Kernel::System::Auth::Radius';
$Self->{'Customer::AuthModule::Radius::Host'} = 'radiushost';
$Self->{'Customer::AuthModule::Radius::Password'} = 'radiussecret';

Customize the customer self-registration
It is possible to customize the self-registration for new customers, accessible via the customer.pl
panel. New optional or required fields, like room number, address or state can be added.

The following example shows how you can specify a required field in the customer database, in
this case to store the room number of a customer.

Customizing the web interface
To display the new field for the room number in the customer.pl web interface, the .dtl file
responsible for the layout in this interface has to be modified. Edit the Kernel/Output/HTML/
Standard/CustomerLogin.dtl file, adding the new field around line 80 (see Script below).

[...]
<div class="NewLine">
 <label for="Room">$Text{"Room{CustomerUser}"}</label>
 <input title="$Text{"Room Number"}" name="Room" type="text"
 id="UserRoom" maxlength="50" />
</div>
[...]

Script: Displaying a new field in the web interface.

Customer mapping
In the next step, the customer mapping has to be expanded with the new entry for the room
number. To ensure that the changes are not lost after an update, put the "CustomerUser" settings
from the Kernel/Config/Defaults.pm into the Kernel/Config.pm. Now change the MAP
array and add the new room number field, as shown in the script below.

Using external backends

113

CustomerUser
(customer database backend and settings)
$Self->{CustomerUser} = {
 Name => 'Database Backend',
 Module => 'Kernel::System::CustomerUser::DB',
 Params => {
 # if you want to use an external database, add the
 # required settings
DSN => 'DBI:odbc:yourdsn',
DSN => 'DBI:mysql:database=customerdb;host=customerdbhost',
User => '',
Password => '',
 Table => 'customer_user',
 },
 # customer unique id
 CustomerKey => 'login',
 # customer #
 CustomerID => 'customer_id',
 CustomerValid => 'valid_id',
 CustomerUserListFields => ['first_name', 'last_name', 'email'],
CustomerUserListFields => ['login', 'first_name', 'last_name',
 'customer_id', 'email'],
 CustomerUserSearchFields => ['login', 'last_name', 'customer_id'],
 CustomerUserSearchPrefix => '',
 CustomerUserSearchSuffix => '*',
 CustomerUserSearchListLimit => 250,
 CustomerUserPostMasterSearchFields => ['email'],
 CustomerUserNameFields => ['title', 'first_name', 'last_name'],
 CustomerUserEmailUniqCheck => 1,
show not own tickets in customer panel, CompanyTickets
CustomerUserExcludePrimaryCustomerID => 0,
generate auto logins
AutoLoginCreation => 0,
AutoLoginCreationPrefix => 'auto',
admin can change customer preferences
AdminSetPreferences => 1,
cache time to live in sec. - cache database queries
CacheTTL => 0,
just a read only source
ReadOnly => 1,
 Map => [

 # note: Login, Email and CustomerID needed!
 # var, frontend, storage, shown (1=always,2=lite), required,
 storage-type, http-link, readonly, http-link-target
 ['UserTitle', 'Title', 'title', 1, 0, 'var',
 '', 0],
 ['UserFirstname', 'Firstname', 'first_name', 1, 1, 'var',
 '', 0],
 ['UserLastname', 'Lastname', 'last_name', 1, 1, 'var',
 '', 0],
 ['UserLogin', 'Username', 'login', 1, 1, 'var',
 '', 0],

Using external backends

114

 ['UserPassword', 'Password', 'pw', 0, 0, 'var',
 '', 0],
 ['UserEmail', 'Email', 'email', 1, 1, 'var',
 '', 0],
 ['UserCustomerID', 'CustomerID', 'customer_id', 0, 1, 'var',
 '', 0],
 ['UserPhone', 'Phone', 'phone', 1, 0, 'var',
 '', 0],
 ['UserFax', 'Fax', 'fax', 1, 0, 'var',
 '', 0],
 ['UserMobile', 'Mobile', 'mobile', 1, 0, 'var',
 '', 0],
 ['UserRoom', 'Room', 'room', 1, 0, 'var',
 '', 0],
 ['UserStreet', 'Street', 'street', 1, 0, 'var',
 '', 0],
 ['UserZip', 'Zip', 'zip', 1, 0, 'var',
 '', 0],
 ['UserCity', 'City', 'city', 1, 0, 'var',
 '', 0],
 ['UserCountry', 'Country', 'country', 1, 0, 'var',
 '', 0],
 ['UserComment', 'Comment', 'comments', 1, 0, 'var',
 '', 0],
 ['ValidID', 'Valid', 'valid_id', 0, 1, 'int',
 '', 0],
],
 # default selections
 Selections => {
 UserTitle => {
 'Mr.' => 'Mr.',
 'Mrs.' => 'Mrs.',
 },
 },
};

Script: Changing the map array.

Customize the customer_user table in the OTRS DB
The last step is to add the new room number column to the customer_user table in the OTRS
database (see Script below). In this column, the entries for the room numbers will be stored.

linux:~# mysql -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 6 to server version: 5.0.18-Debian_7-log

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> use otrs;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Using external backends

115

Database changed
mysql> ALTER TABLE customer_user ADD room VARCHAR (200);
Query OK, 3 rows affected (0.01 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> quit
Bye
linux:~#

Script: Adding a new column to the customer_user table.

Now the new field for the room should be displayed in the customer.pl panel. New customers
should have to insert their room number if they register a new account. If you use apache and
use mod_perl for OTRS, you should restart the web server to activate the changes.

116

Chapter 12. States
Predefined states

OTRS allows you to change predefined ticket states and their types, or even add new ones. Two
attributes are important for a state: the state name and the state type.

The default states of OTRS are: 'closed successful', 'closed unsuccessful', 'merged', 'new', 'open',
'pending auto close+', 'pending auto close-', 'pending reminder' and 'removed'.

New
Tickets are usually in this state when created from incoming e-mails.

Open
This is the default state for tickets assigned to queues and agents.

Pending reminder
After the pending time has expired, the ticket owner will receive a reminder email concerning the
ticket. If the ticket is not locked, the reminder will be sent to all agents in the queue. Reminder
tickets will only be sent out during business hours, and are repeatedly sent every 24 hours until
the ticket state is changed by the agent. Time spent by the ticket in this status will still add towards
the escalation time calculation.

Pending auto close-
Tickets in this status will be set to "Closed Unsuccessful" if the pending time has expired. Time
spent by the ticket in this status will still add towards the escalation time calculation.

Pending auto close+
Tickets in this status will be set to "Closed Successful" if the pending time has expired. Time
spent by the ticket in this status will still add towards the escalation time calculation.

Merged
This is the state for tickets that have been merged with other tickets.

Closed Successful
This is the end state for tickets that have been successfully resolved. Depending on your
configuration, you may or may not be able to reopen closed tickets.

Closed Unsuccessful
This is the end state for tickets that have NOT been successfully resolved. Depending on your
configuration, you may or may not be able to reopen closed tickets.

States

117

Customizing states
Every state has a name (state-name) and a type (state-type). Click on the States link on the
Admin page and press the button "Add state" to create a new state. You can freely choose the
name of a new state. The state types can not be changed via the web interface. The database
has to be directly modified if you want to add new types or change existing names. The default
state types should typically not be modified as this can yield unpredictable results. For instance,
escalation calculations and the unlock feature are based on specific state types.

The name of an already existing state can be changed, or new states added through this screen.
If the state "new" has been changed via the web interface, this change also has to be configured
via the config file Kernel/Config.pm or via the SysConfig interface. The settings specified in
the script below have to be modified to ensure that OTRS works with the changed state for "new".

 [...]
 # PostmasterDefaultState
 # (The default state of new tickets.) [default: new]
 $Self->{PostmasterDefaultState} = 'new';

 # CustomerDefaultState
 # (default state of new customer tickets)
 $Self->{CustomerDefaultState} = 'new';
 [...]

Script: Modifying the Kernel/Config.pm settings.

If a new state type should be added, the ticket_state_type table in the OTRS database needs to
be modified with a database client program, as shown in the script below.

linux:~# mysql -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 23 to server version: 5.0.16-Debian_1-log

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> use otrs;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql> insert into ticket_state_type (name,comments) values
 ('own','Own
state type');
Query OK, 1 row affected (0.00 sec)

mysql> quit
Bye
linux:~#

Script: Modifying the OTRS database.

States

118

Now it is possible to use the new state type you just created. After a state has been linked with
this new state type, the OTRS configuration also has to be changed to ensure that the new state
is usable. Just modify the following options via SysConfig:

Ticket -> Frontend::Agent::Ticket::ViewPhoneNew > AgentTicketPhone###StateDefault - to
define the default next state for new phone tickets.

Ticket -> Frontend::Agent::Ticket::ViewPhoneNew > AgentTicketPhone###StateType - to define
the available next states for new phone tickets.

Ticket -> Frontend::Agent::Ticket::ViewEmailNew > AgentTicketEmail###StateDefault - to
define the default next state for new email tickets.

Ticket -> Frontend::Agent::Ticket::ViewEmailNew > AgentTicketEmail###StateType - to define
the available next states for new email tickets.

Ticket -> Frontend::Agent::Ticket::ViewPhoneOutbound > AgentTicketPhoneOutbound###State
- to define the default next state for new phone articles.

Ticket -> Frontend::Agent::Ticket::ViewPhoneOutbound >
AgentTicketPhoneOutbound###StateType - to define the available next states for new phone
articles.

Ticket:Frontend::Agent::Ticket::ViewMove:Ticket::DefaultNextMoveStateType - to define the
default next state after moving a ticket.

Ticket -> Frontend::Agent::Ticket::ViewBounce > StateDefault - to define the default next state
after bouncing a ticket.

Ticket -> Frontend::Agent::Ticket::ViewBounce > StateType - to define the available next states
in the bounce screen.

Ticket -> Frontend::Agent::Ticket::ViewBulk > StateDefault - to define the default next state in
a bulk action.

Ticket -> Frontend::Agent::Ticket::ViewBulk > StateType - to define the available next states in
the bulk action screen.

Ticket -> Frontend::Agent::Ticket::ViewClose > StateDefault - to define the default next state
after closing a ticket.

Ticket -> Frontend::Agent::Ticket::ViewClose > StateType - to define the available next states
in the close screen.

Ticket -> Frontend::Agent::Ticket::ViewCompose > StateDefault - to define the default next state
in the Compose (reply) screen.

Ticket -> Frontend::Agent::Ticket::ViewCompose > StateType - to define the available next
states in the Compose (reply) screen.

Ticket -> Frontend::Agent::Ticket::ViewForward > StateDefault - to define the default next state
after forwarding a ticket.

Ticket -> Frontend::Agent::Ticket::ViewForward > StateType - to define the available next states
in the Forward screen.

Ticket -> Frontend::Agent::Ticket::ViewForward > StateDefault - to define the default next state
of a ticket in the free text screen.

States

119

Ticket -> Frontend::Agent::Ticket::ViewForward > StateType - to define the available next states
in the free text screen.

Ticket -> Core::PostMaster > PostmasterDefaultState - to define the state of tickets created
from emails.

Ticket -> Core::PostMaster > PostmasterFollowUpState - to define the state of tickets after a
follow-up has been received.

Ticket -> Core::PostMaster > PostmasterFollowUpStateClosed - to define the state of tickets
after a follow-up has been received on an already closed ticket.

Ticket -> Core::Ticket > ViewableStateType - to define the state types that are displayed at
various places in the system, for example in the Queueview.

Ticket -> Core::Ticket > UnlockStateType - to define the state types for unlocked tickets.

Ticket -> Core::Ticket > PendingReminderStateType - to define the state type for reminder
tickets.

Ticket -> Core::Ticket > PendingAutoStateType - to define the state type for Pending Auto tickets.

Ticket -> Core::Ticket > StateAfterPending - to define the state a ticket is set to after the Pending
Auto timer of the configured state has expired.

120

Chapter 13. Modifying ticket priorities
OTRS comes with five default priority levels that can be modified via the "Priorities" link on the
Admin page. When creating a customized list of priorities, please keep in mind that they are
sorted alphabetically in the priority selection box in the user interface. Also, OTRS orders tickets
by internal database IDs in the QueueView.

Note
As with other OTRS entities, priorities may not be deleted, only deactivated by setting
the Valid option to invalid or invalid-temporarily.

Important
If a new priority was added or if an existing one was changed, you might also want to
modify some values in SysConfig:

• Ticket:Core::Postmaster::PostmasterDefaultPriority - defines the default priority for
all incoming emails.

• Ticket:Frontend::Agent:Ticket::ViewPhoneNew:Priority - defines the default priority in
the New Phone Ticket screen for agents.

• Ticket:Frontend::Agent:Ticket::ViewEmailNew:Priority - defines the default priority in
the New Email Ticket screen for agents.

• Ticket:Frontend::Customer:Ticket::ViewNew:PriorityDefault - defines the default
priority in the New Ticket screen in the Customer frontend.

121

Chapter 14. Creating your own themes
You can create your own themes so as to use the layout you like in the OTRS web frontend. To
create own themes, you should customize the output templates to your needs.

More information on the syntax and structure of output templates can be found in the Developer
Manual at http://doc.otrs.org, especialy in the chapter on templates [http://doc.otrs.org/
developer/3.1/en/html/hacking.html#TemplatingMechanism].

As an example, perform the following steps to create a new theme called "Company":

1. Create a directory called Kernel/Output/HTML/Company and copy all files that you like to
change, from Kernel/Output/HTML/Standard into the new folder.

Important
Only copy over the files you actually change. OTRS will automatically get the missing
files from the Standard theme. This will make upgrading at a later stage much easier.

2. Customize the files in the directory Kernel/Output/HTML/Company, and change the layout
to your needs.

3. To activate the new theme, add them in SysConfig under Frontend::Themes.

Now the new theme should be useable. You can select it via your personal preferences page.

Warning
Do not change the theme files shipped with OTRS, since these changes will be lost after
an update. Create your own themes only by performing the steps described above.

http://doc.otrs.org
http://doc.otrs.org/developer/3.1/en/html/hacking.html#TemplatingMechanism
http://doc.otrs.org/developer/3.1/en/html/hacking.html#TemplatingMechanism
http://doc.otrs.org/developer/3.1/en/html/hacking.html#TemplatingMechanism

122

Chapter 15. Localization of the OTRS
frontend

OTRS offers multi-language support for its web interface.

Procedures for localization for the OTRS framework, steps to be followed to create a new
language translation, as well as procedures for translation customizations, can be found in the
"Language Translations" [http://doc.otrs.org/developer/3.1/en/html/contributing.html#translate]
chapter from the developer manual on http://doc.otrs.org.

http://doc.otrs.org/developer/3.1/en/html/contributing.html#translate
http://doc.otrs.org/developer/3.1/en/html/contributing.html#translate
http://doc.otrs.org

123

Chapter 16. PGP
OTRS has the capability to sign or encrypt outgoing messages with PGP. Further, encrypted
incoming messages can be decrypted. Encryption and decryption are done with the GPL tool
GnuPG. To setup GnuPG for OTRS, the following steps have to be performed:

1. Install GnuPG, via the package manager of your operating system.

2. Configure GnuPG for use with OTRS. The necessary directories for GnuPG and a private
key have to be created. The command shown in the script below has to be executed as user
'otrs' from a shell.

 linux:~# su otrs
 linux:/root$ cd
 linux:~$ pwd
 /opt/otrs
 linux:~$ gpg --gen-key
 gpg (GnuPG) 1.4.2; Copyright (C) 2005 Free Software Foundation,
 Inc.
 This program comes with ABSOLUTELY NO WARRANTY.
 This is free software, and you are welcome to redistribute it
 under certain conditions. See the file COPYING for details.

 gpg: directory `/opt/otrs/.gnupg' created
 gpg: new configuration file `/opt/otrs/.gnupg/gpg.conf' created
 gpg: WARNING: options in `/opt/otrs/.gnupg/gpg.conf' are not yet
 active during t
 his run
 gpg: keyring `/opt/otrs/.gnupg/secring.gpg' created
 gpg: keyring `/opt/otrs/.gnupg/pubring.gpg' created
 Please select what kind of key you want:
 (1) DSA and Elgamal (default)
 (2) DSA (sign only)
 (5) RSA (sign only)
 Your selection? 1
 DSA keypair will have 1024 bits.
 ELG-E keys may be between 1024 and 4096 bits long.
 What keysize do you want? (2048)
 Requested keysize is 2048 bits
 Please specify how long the key should be valid.
 0 = key does not expire
 <n> = key expires in n days
 <n>w = key expires in n weeks
 <n>m = key expires in n months
 <n>y = key expires in n years
 Key is valid for? (0)
 Key does not expire at all
 Is this correct? (y/N) y

 You need a user ID to identify your key; the software constructs
 the user ID
 from the Real Name, Comment and Email Address in this form:

PGP

124

 "Heinrich Heine (Der Dichter) <heinrichh@duesseldorf.de>"

 Real name: Ticket System
 Email address: support@example.com
 Comment: Private PGP Key for the ticket system with address
 support@example.com
 You selected this USER-ID:
 "Ticket System (Private PGP Key for the ticket system with
 address support@examp
 le.com) <support@example.com>"

 Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? O
 You need a Passphrase to protect your secret key.

 Passphrase: secret
 Repeat passphrase: secret

 We need to generate a lot of random bytes. It is a good idea to
 perform
 some other action (type on the keyboard, move the mouse, utilize
 the
 disks) during the prime generation; this gives the random number
 generator a better chance to gain enough entropy.
 ++++++++++.+++++++++++++++++++++++++....+++++.+++++...++++++++++
+++++++++++++++.
 +++++++++++++++++++++++++.+++++.+++++.+++++++++++++++++++++++++>
++++++++++>+++++
 >+++++<+++++................................+++++

 Not enough random bytes available. Please do some other work to
 give
 the OS a chance to collect more entropy! (Need 280 more bytes)

 ++++++++++.+++++..++++++++++..+++++....++++++++++++++++++++.++++
+++++++++++.++++
 ++++++++++++++++++++++++++.++++++++++.+++++++++++++++.+++++++++
+.+++++++++++++++
 ..+++++>.+++++....>++++
+..
 ...>++++
+<+++++.........
 +++++^^^
 gpg: /opt/otrs/.gnupg/trustdb.gpg: trustdb created
 gpg: key 7245A970 marked as ultimately trusted
 public and secret key created and signed.

 gpg: checking the trustdb
 gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model
 gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0q, 0n, 0m,
 0f, 1u
 pub 1024D/7245A970 2006-02-03
 Key fingerprint = 2ED5 BC36 D2B6 B055 7EE1 5833 1D7B F967
 7245 A970

PGP

125

 uid Ticket System (Private pgp key for ticket
 system with addre
 ss support@example.com) <support@example.com>
 sub 2048g/52B97069 2006-02-03

 linux:~$

Script: Configuring GnuPG.

As shown in the script below, the default settings can be applied for most of the required
parameters. Only the values for the key owner have to be entered correctly, with a proper
password specified for the key.

3. Now OTRS has to be made ready to use PGP. From the Admin console, open the SysConfig
interface and search for "PGP". Select the sub group Crypt::PGP from the search results.

In the screen for the PGP settings, PGP should be activated for OTRS (first option). Also, the
path to the gpg program should be set and checked.

The next config setting (PGP::Options) may also require changing. Via this config setting,
the parameters that are used for every execution of gpg by the 'otrs' user can be specified.
In particular, the directory of the config files for GnuPG of the 'otrs' user is important. In the
example /opt/otrs/.gnupg is used. This directory was created earlier during the PGP
configuration.

Via the next config option (PGP::Key::Password) it is possible to specify the pairs of key IDs
and their passwords for own private keys. Because communication partners from outside write
to the ticket system with their messages encrypted with your public key, OTRS can decrypt
these messages with the ID/passwords specified here.

How to get the id of your own private key? The ID of your own private key is already shown
during the key generation (see step 1 from above). It is also possible to get the ID if the
command specified in the following script is executed as user 'otrs':

 linux:~# su otrs
 linux:/root$ cd
 linux:~$ pwd
 /opt/otrs
 linux:~$ gpg --list-keys
 /opt/otrs/.gnupg/pubring.gpg

 pub 1024D/7245A970 2006-02-03
 uid Ticket System (Private pgp key for ticket
 system with
 address support@example.com) <support@example.com>
 sub 2048g/52B97069 2006-02-03

 linux:~$

Script: Getting the ID of your own private key.

PGP

126

The ID of the private key can be found in the line that starts with "sub". It is a hexadecimal string
that is eight characters long, in the example above it is "52B97069". The password you have
to specify for this key in the ticket system is the same that was given during key generation.

After this data is inserted, the "Update" button can be used to save the settings. OTRS is
ready to receive and decrypt encoded messages now.

4. Finally, import a customer's public key. This ensures that encrypted messages can be sent
out to this customer. There are two ways to import a public key of a customer.

The first way is to specify the public key of a customer in the customer management interface.

The second way is to specify the key via the PGP settings, reachable from the Admin page. On
the right section of this screen, all already imported public keys of customers are displayed.
After PGP has been activated and configured for OTRS, your own public key should also be
listed there. In the left area of the PGP setting screen it is possible to search for keys. Also,
a new public key can be uploaded into the system from a file.

The files with the public key that need to be imported into OTRS have to be GnuPGP
compatible key files. In most cases, the key stored in a file is an "ASCII armored key". OTRS
can deal with this format.

127

Chapter 17. S/MIME
At first glance, encryption with S/MIME seems a little more complicated than with PGP. First,
you have to establish a Certification Authority (CA) for the OTRS system, following which the
procedures are very much like those needed with PGP: configure OTRS, install your own
certificate, import other public certificates as needed, etc.

The S/MIME configuration is conducted outside the OTRS web interface for the most part, and
should be carried out in a shell by the 'otrs' user. The MIME configuration under Linux is based on
SSL (OpenSSL). Therefore, check first of all whether the OpenSSL package is installed on your
system. The OpenSSL package includes a script called CA.pl, with which the most important
steps of certificate creation can be performed. To simplify the procedure, find out where in the
filesystem the CA.pl script is stored and enter the location temporarily into the PATH variable of
the shell (see Script below).

otrs@linux:~> rpm -ql openssl | grep CA
/usr/share/ssl/misc/CA.pl
otrs@linux:~> export PATH=$PATH:/usr/share/ssl/misc
otrs@linux:~> which CA.pl
/usr/share/ssl/misc/CA.pl
otrs@linux:~> mkdir tmp; cd tmp
otrs@linux:~/tmp>

Script: Configuring S/MIME.

The script above shows that a new temporary directory ~/tmp has been created, in which the
certificate is to be generated.

To create a certificate, perform the following operations in the command line (we assume that
the OTRS administrator has to create a SSL certificate for test and learning purposes. In case
you already have a certified SSL certificate for the encryption, use it and skip these steps):

1. Establish your own Certification Authority for SSL. You need it to certify the request for your
own SSL certificate (see Script below).

otrs@linux:~/tmp> CA.pl -newca
CA certificate filename (or enter to create)

Making CA certificate ...
Generating a 1024 bit RSA private key
...++++++
......++++++
writing new private key to './demoCA/private/cakey.pem'
Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be
 incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name
 or a DN.
There are quite a few fields but you can leave some blank

S/MIME

128

For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:DE
State or Province Name (full name) [Some-State]:OTRS-state
Locality Name (eg, city) []:OTRS-town
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Your
 company
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:OTRS Admin
Email Address []:otrs@your-domain.tld
otrs@linux:~/tmp> ls -la demoCA/
total 8
-rw-r--r-- 1 otrs otrs 1330 2006-01-08 17:54 cacert.pem
drwxr-xr-x 2 otrs otrs 48 2006-01-08 17:53 certs
drwxr-xr-x 2 otrs otrs 48 2006-01-08 17:53 crl
-rw-r--r-- 1 otrs otrs 0 2006-01-08 17:53 index.txt
drwxr-xr-x 2 otrs otrs 48 2006-01-08 17:53 newcerts
drwxr-xr-x 2 otrs otrs 80 2006-01-08 17:54 private
-rw-r--r-- 1 otrs otrs 17 2006-01-08 17:54 serial
otrs@linux:~/tmp>

Script: Establishing a Certification Authority for SSL.

2. Generate a certificate request (see Script below).

otrs@linux:~/tmp> CA.pl -newreq
Generating a 1024 bit RSA private key
..++++++
....++++++
writing new private key to 'newreq.pem'
Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be
 incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name
 or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:DE\keyreturn
State or Province Name (full name) [Some-State]:OTRS-state
Locality Name (eg, city) []:OTRS-town
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Your
 company
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:OTRS admin
Email Address []:otrs@your-domain.tld

S/MIME

129

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
Request (and private key) is in newreq.pem
otrs@linux:~/tmp> ls -la
total 4
drwxr-xr-x 6 otrs otrs 232 2006-01-08 17:54 demoCA
-rw-r--r-- 1 otrs otrs 1708 2006-01-08 18:04 newreq.pem
otrs@linux:~/tmp>

Script: Creating a certificate request.

3. Signing of the certificate request. The certificate request can either be signed and thereby
certified by your own CA, or made more credible by being signed by another external certified
CA (see Script below).

otrs@linux:~/tmp> CA.pl -signreq
Using configuration from /etc/ssl/openssl.cnf
Enter pass phrase for ./demoCA/private/cakey.pem:
Check that the request matches the signature
Signature ok
Certificate Details:
 Serial Number:
 fd:85:f6:9f:14:07:16:c8
 Validity
 Not Before: Jan 8 17:04:37 2006 GMT
 Not After : Jan 8 17:04:37 2007 GMT
 Subject:
 countryName = DE
 stateOrProvinceName = OTRS-state
 localityName = OTRS-town
 organizationName = Your Company
 commonName = OTRS administrator
 emailAddress = otrs@your-domain.tld
 X509v3 extensions:
 X509v3 Basic Constraints:
 CA:FALSE
 Netscape Comment:
 OpenSSL Generated Certificate
 X509v3 Subject Key Identifier:

 01:D9:1E:58:C0:6D:BF:27:ED:37:34:14:D6:04:AC:C4:64:98:7A:22
 X509v3 Authority Key Identifier:

 keyid:10:4D:8D:4C:93:FD:2C:AA:9A:B3:26:80:6B:F5:D5:31:E2:8E:DB:A8
 DirName:/C=DE/ST=OTRS-state/L=OTRS-town/O=Your
 Company/
 CN=OTRS admin/emailAddress=otrs@your-domain.tld
 serial:FD:85:F6:9F:14:07:16:C7

S/MIME

130

Certificate is to be certified until Jan 8 17:04:37 2007 GMT (365
 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated
Signed certificate is in newcert.pem
otrs@linux:~/tmp>

Script: Signing of the certificate request.

4. Generate your own certificate, and all data going with it, using the signed certificate request
(see Script below).

otrs@linux:~/tmp> CA.pl -pkcs12 "OTRS Certificate"
Enter pass phrase for newreq.pem:
Enter Export Password:
Verifying - Enter Export Password:
otrs@linux:~/tmp> ls -la
total 12
drwxr-xr-x 6 otrs otrs 328 2006-01-08 18:04 demoCA
-rw-r--r-- 1 otrs otrs 3090 2006-01-08 18:13 newcert.p12
-rw-r--r-- 1 otrs otrs 3791 2006-01-08 18:04 newcert.pem
-rw-r--r-- 1 otrs otrs 1708 2006-01-08 18:04 newreq.pem
otrs@linux:~/tmp>

Script: Generating a new certificate.

Now that these operations have been performed, the S/MIME setup must be completed in OTRS.

This part of the setup is carried out in the Admin page, choosing the link "SMIME". In case the
general S/MIME support in OTRS has not yet been enabled, the mask points this out to the
administrator and provides an appropriate link for enabling it.

With the SysConfig group "Crypt::SMIME", you can also enable and configure the general S/
MIME support.

Here you can activate S/MIME support, and define the paths for the OpenSSL command and the
directory for the certificates. The key file created above must be stored in the directory indicated
here. Otherwise OpenSSL cannot use it.

The next step is performed in the S/MIME configuration on the OTRS Admin page. Here, you
can import the private key(s) of the OTRS system and the public keys of other communication
partners. Enter the public key that has been created in the beginning of this section and added
to OTRS.

Obviously, all public S/MIME keys of communication partners can be imported using the
customer administration tool as well.

131

Chapter 18. Access Control Lists
(ACLs)
Introduction

From OTRS 2.0 on, Access Control Lists (ACLs) can be used to control access to tickets,
modules, queues, etc., or to influence actions on tickets (closing, moving, etc.) in certain
situations. ACLs can be used to supplement the existing permission system of roles and groups.
Using ACLs, rudimental workflows within the system can be mapped, based on ticket attributes.

As yet, ACLs cannot be created using the SysConfig interface. They must be directly entered into
the Kernel/Config.pm file. This chapter has some ACL examples which will walk you trough
the process of defining ACL definitions, and a reference of all possible important ACL settings.

Examples
Example 18.1. ACL allowing movement into a queue of only those tickets
with ticket priority 5.

This example shows you the basic structure of an ACL. First, it needs to have a name. In this
case, it is "ACL-Name-2". Note that the ACLs will be numerically sorted before execution, so you
should use the names carefully.

Secondly, you have a "Properties" section which is a filter for your tickets. All the criteria defined
here will be applied to a ticket to determine if the ACL must be applied or not. In our example, a
ticket will match if it is in the queue "Raw" and has priority "5 very high".

Lastly, a section "Possible" defines modifications to the screens. In this case, from the available
queues, only the queue "Alert" can be selected in a ticket screen.

ticket acl
$Self->{TicketAcl}->{'100-Example-ACL'} = {
 # match properties
 Properties => {
 # current ticket match properties
 Ticket => {
 Queue => ['Raw'],
 Priority => ['5 very high'],
 }
 },
 # return possible options (white list)
 Possible => {
 # possible ticket options (white list)
 Ticket => {
 Queue => ['Alert'],
 },
 },
};

Access Control Lists (ACLs)

132

Example 18.2. ACL disabling the closing of tickets in the raw queue, and
hiding the close button.

Here you can see how a ticket field (state) can be filtered with more than one possible value to
select from. It is also possible to limit the actions that can be executed for a certain ticket. In this
case, the ticket cannot be closed.

$Self->{TicketAcl}->{'101-Second-Example-ACL'} = {
 # match properties
 Properties => {
 # current ticket match properties
 Ticket => {
 Queue => ['Raw'],
 }
 },
 # return possible options (white list)
 Possible => {
 # possible ticket options (white list)
 Ticket => {
 State => ['new', 'open', 'pending reminder'],
 },
 # possible action options
 Action => {
 AgentTicketBounce => 1,
 AgentTicketClose => 0,
 AgentTicketCompose => 1,
 AgentTicketCustomer => 1,
 AgentTicketForward => 1,
 AgentTicketFreeText => 1,
 AgentTicketHistory => 1,
 AgentTicketLink => 1,
 AgentTicketLock => 1,
 AgentTicketMerge => 1,
 AgentTicketMove => 1,
 AgentTicketNote => 1,
 AgentTicketOwner => 1,
 AgentTicketPending => 1,
 AgentTicketPhone => 1, # only used to hide the
 Split action
 AgentTicketPhoneInbound => 1,
 AgentTicketPhoneOutbound => 1,
 AgentTicketPrint => 1,
 AgentTicketPriority => 1,
 AgentTicketResponsible => 1,
 AgentTicketWatcher => 1,
 AgentTicketZoom => 1,
 AgentLinkObject => 1, # only used to hide the
 Link action
 },
 },
};

Access Control Lists (ACLs)

133

Example 18.3. ACL removing always state closed successful.

This example shows how it is possible to define negative filters (the state "closed successful"
will be removed). You can also see that not defining match properties for a ticket will match any
ticket, i. e. the ACL will always be applied. This may be useful if you want to hide certain values by
default, and only enable them in special circumstances (e. g. if the agent is in a specific group).

$Self->{TicketAcl}->{'102-Third-ACL-Example'} = {
 # match properties
 Properties => {
 # current ticket match properties (match always)
 },
 # return possible options
 PossibleNot => {
 # possible ticket options
 Ticket => {
 State => ['closed successful'],
 },
 },
};

Example 18.4. ACL only showing Hardware services for tickets that are
created in queues that start with "HW".

This example also shows you how you can use regular expressions for matching tickets and for
filtering the available options.

$Self->{TicketAcl}->{'Only-Hardware-Services-for-HW-Queues'} = {
 # match properties
 # note we don't have "Ticket => {" because there's no ticket yet
 Properties => {
 Queue => {
 Name => ['[RegExp]HW'],
 }
 },
 # return possible options
 Possible => {
 # possible ticket options
 Ticket => {
 Service => ['[RegExp]^(Hardware)'],
 },
 },
};

Reference
In the example below there is a list of all parameters which can be used for ACLs.

Example 18.5. Reference showing all possible important ACL settings.

Access Control Lists (ACLs)

134

ticket acl
$Self->{TicketAcl}->{'200-ACL-Reference'} = {
 # match properties
 Properties => {
 # current action match properties
 Frontend => {
 Action => ['AgentTicketPhone', 'AgentTicketEmail'],
 },
 # current queue match properties
 Queue => {
 Name => ['Raw'],
 QueueID => ['some id'],
 GroupID => ['some id'],
 Email => ['some email'],
 RealName => ['OTRS System'],
 # ...
 }
 },
 # current user match properties
 User => {
 UserLogin => ['some login'],
 # ...
 Group_rw => [
 'hotline',
],
 # ...
 },
 # current customer user match properties
 CustomerUser => {
 UserLogin => ['some login'],
 # ...
 },
 # current service match properties
 Service => {
 ServiceID => ['some id'],
 Name => ['some name'],
 ParentID => ['some id'],
 # ...
 },
 # current type match properties
 Type => {
 ID => ['some id'],
 Name => ['some name'],
 # ...
 },
 # current priority match properties
 Priority = {
 ID => ['some id'],
 Name => ['some name'],
 # ...
 },
 # current SLA match properties
 SLA = {
 SLAID => ['some id'],

Access Control Lists (ACLs)

135

 Name => ['some name'],
 Calendar => ['some calendar'],
 # ...
 },
 # current state match properties
 State = {
 ID => ['some id'],
 Name => ['some name'],
 TypeName => ['some state type name'],,
 TypeID => ['some state type id'],
 # ...
 },
 # current ticket owner match properties
 Owner => {
 UserLogin => ['some login'],
 # ...
 Group_rw => [
 'some group',
],
 # ...
 },
 # current ticket responsible match properties
 Responsible => {
 UserLogin => ['some login'],
 # ...
 Group_rw => [
 'some group',
],
 # ...
 },
 # current dynamic field match properties
 DynamicField => {
 # keys must be in DynamicField_<field_name> format
 DynamicField_Field1 => ['some value'],
 DynamicField_OtherField => ['some value'],
 DynamicField_TicketFreeText2 => ['some value'],
 # ...
 },
 # current ticket match properties
 Ticket => {
 Queue => ['Raw'],
 State => ['new', 'open'],
 Priority => ['some priority'],
 Lock => ['lock'],
 CustomerID => ['some id'],
 CustomerUserID => ['some id'],
 Owner => ['some owner'],
 DynamicField_Field1 => ['some value'], # Must be the
 untranslated values
 # specified
 in the dynamic field
 # definition
 and not the IDs
 DynamicField_MyField => ['some value'],

Access Control Lists (ACLs)

136

 # ...
 },
 },
 # return possible options (white list)
 Possible => {
 # possible ticket options (white list)
 Ticket => {
 Queue => ['Hotline', 'Coordination'],
 State => ['some state'],
 Priority => ['5 very high'],
 DynamicField_Field1 => ['some value'],
 DynamicField_MyField => ['some value'],
 # ...
 NewOwner => ['some owner'],
 OldOwner => ['some owner'],
 # ...
 },
 # possible action options (white list)
 Action => {
 AgentTicketBounce => 1,
 AgentTicketClose => 1,
 AgentTicketCompose => 0,
 AgentTicketCustomer => 0,
 AgentTicketForward => 0,
 AgentTicketFreeText => 1,
 AgentTicketHistory => 1,
 AgentTicketLink => 0,
 AgentTicketLock => 1,
 AgentTicketMerge => 0,
 AgentTicketMove => 1,
 AgentTicketNote => 1,
 AgentTicketOwner => 1,
 AgentTicketPending => 1,
 AgentTicketPhone => 1, # only used to hide the
 Split action
 AgentTicketPhoneInbound => 0,
 AgentTicketPhoneOutbound => 1,
 AgentTicketPrint => 1,
 AgentTicketPriority => 0,
 AgentTicketResponsible => 1,
 AgentTicketWatcher => 1,
 AgentTicketZoom => 1,
 AgentLinkObject => 1, # only used to hide the
 Link action
 },
 },
 # remove options (black list)
 PossibleNot => {
 # See section "Possible"
 # ...
 },
};

137

Chapter 19. Stats module
The OTRS stats module holds features to track operational statistics and generate custom
reports associated with OTRS usage. The OTRS system uses the term "stat" generically to refer
to a report presenting various indicators.

Proper configuration of the OTRS stats module is associated with a multitude of requirements
and considerations. These include the various OTRS modules to be evaluated, user permission
settings, indicators to be calculated and their complexity levels, ease of configuration of the stats
module, speed and efficiency of calculations, and support of a rich set of output variants.

Statistical elements, i.e. files which supplement the functionality of the stats module for specific
requirements, can be integrated for calculating complex statistics.

Handling of the module by the agent
When signed on as an agent, the navigation bar displays the link "Statistics". This has various
submenu options, as shown in Figure.

Figure: Statistics menu options.

The different options provided in the statistics menu are:

• Overview. Presents a list of different pre-configured reports.

• New. Requires rw rights.

• Import. Requires rw rights.

Overview
Selecting the "Statistics" link in the navigation bar, and then the submenu link "Overview", calls
up the Overview screen. The Overview screen presents a list of all pre-configured reports the
agent can use (see Figure below).

Stats module

138

Figure: Overview of the standard reports.

The following information is provided for each of the standard reports listed in the Overview:

• Stat#. Unique report number.

• Title. Title of the report.

• Object. Object used for generating the statistic. In the case of a static statistic, no object is
displayed as no dynamic object is used for its generation.

• Description. A brief description of the report.

When the stats module is installed, it comes preloaded with a few sample reports imported into
the system. These are shown as a list on the Overview page. If the Overview list extends to more
than a single page, the agent can browse through the different pages. The list of reports can
be sorted as desired, by clicking the desired column header in the list. To generate a particular
report, click on the stat number associated with the report in the Overiew list. This brings up the
"View" interface for the report.

Generate and view reports
The view user interface provides the stat's configuration settings (see Figure below).

Stats module

139

Figure: Viewing a specific report.

Configuration settings for a particular report can be set within the range of options in the View
screen. Either the report creator or any others with the appropriate permissions can make the
settings.

The page shows the following:

• Possible actions:

• Go to overview. Link back to the Overview list of reports.

• Edit. Edit the current report structure (rw rights required).

• Delete. Delete the current report (rw rights required).

• Export config. Export a report configuration, via file download (rw rights required).

Usage: Export and Import functions allow for the convenient creation and testing of reports
on test systems and subsequent easy integration into the production system.

• Report details:

• Stat#. Number of the report.

• Title. Title of the report.

• Object. Object used for generating the report.

• Description. Description on the report's purpose.

• Format. Report output format which, depending on the configuration, can be any of the
following output formats:

• CSV.

• Print.

• Graph-lines.

Stats module

140

• Graph-bars.

• Graph-hbars.

• Graph-points.

• Graph-lines-points.

• Graph-area.

• Graph-pie.

• Graphsize. Size in pixels for the graphic / chart. This option is only given when the report
configuration allows a chart. All generally usable graphic sizes are configured by the
OTRS administrator in SysConfig. The agent can then pre-select all relevant formats, while
configuring the report.

• Sum rows. Indicates whether the report is amended by a column, whose cells state the sums
of the respective rows.

• Sum columns. Indicates whether the report is amended by a row, whose cells state the sum
of the respective columns.

• Cache. Indicates whether the generated report is cached in the filesystem.

• Valid. This can be set to "invalid" if a report must not be run temporarily for any reason. The
"Start" button in the bottom of the right panel is then no longer displayed. The report can
no longer be generated.

• Created. Creation time of the report.

• Created by. Name of the agent who created the report.

• Changed. Time when the report was last modified.

• Changed by. Name of the agent who altered the report last.

• X-axis. Using this function, the agent can switch the x and y axes (only when activated by
the OTRS administrator).

• The general information is followed by information about the report itself. There are two
different report (or stat) views:

• Static stat view. Static report generators can be integrated into the stats module (see
Figure below).

Stats module

141

Figure: Viewing a static report.

• Dynamic stat view (see Figure above). They can be displayed in two different ways:

• Unchangeable settings. The originator of the report has no permission for modifying
this fields.

• Changeable settings. The configuration settings of such reports can be changed by the
agent.

Pressing the "Start" button (at the bottom of the screen) is the last step to generate the report.
There are two possible reasons for this button to not be displayed:

1. The report was set to invalid and thus, deactivated.

2. The report was not configured cleanly and is, therefore, not yet executable. In this case, the
necessary information can be found in the OTRS notification section (below the navigation
bar).

If the settings on the View page are incorrect, this page is shown again after the "Start" button was
pushed, and information about which input was incorrect is provided in the notification section.

Edit / New
Agents with write rights can edit an existing report configuration by calling up the edit user
interface of the stats module. Alternately, they may create a new report. The associated screens
can be reached in the following manner:

1. Edit: Via the "Edit" button in the stat view.

2. New: Via the "New" link in the Statistics menu from the navigation bar, or the "Add" button
from the Overview page.

The stats are edited with a wizard in four steps:

1. General specifications.

2. Definition of the element for the X-axis.

Stats module

142

3. Specification of the value series.

4. Selecting the restrictions to limit the report.

Steps 2 through 4 are only needed for the generation of reports with dynamic stats. For a static
stat, only the general information (point 1) is required.

Information about how to handle the page is provided on each of these screens, below the Actions
panel in a Hints panel.

If incorrect inputs are entered, the previously processed user interface is displayed again and
with information about the incorrect input. This information can be found in the OTRS notification
section. The next input user interface is only displayed after the current form has been filled out
correctly.

1. General specifications. It is the first page of the Edit wizard (see Figure below).

Figure: Editing the general specifications of a report.

In the screen showed in Figure, there are a great number of common specifications and
settings that can be edited:

• Title. Should reflect the stat's purpose in a concise manner.

• Description. More descriptive information about the report definition, type of configuration
parameters, etc.

• Dynamic object. If the OTRS installation provides various dynamic objects, one of them can
be chosen. The objects meet the requirements of the particular modules.

• Static file. Usually this selection is not shown, as only static files which are not yet assigned
to any reports are displayed. If "Static file" is displayed, however, it is important to tick the
option field and select a generation mode (dynamic with a dynamic object or static with a
file). If a static file is selected, the input user interfaces 2 through 4 are not shown as the
static file contains all required configuration settings.

• Permission settings. Facilitate a restriction of the groups (and therefore, agents) who can
later view and generate the preconfigured reports. Thus the various reports can be allocated

Stats module

143

to the different departments and work groups who need them. It is possible to allocate one
report to various groups.

Example 1: The "stats" group was selected. The report is viewable for all users having at
least ro rights for the "stats" group. This access is available by default.

Example 2: A group named "sales" was selected. All users with ro rights for the "sales"
group can see the stat in the view mode and generate it. However, the report will not be
available for viewing by other users.

• Format. Output format of the stat: Depending on the configuration, one or more of the
following formats can be chosen:

• CSV.

• Print.

• graph-lines.

• graph-bars.

• graph-hbars.

• graph-points.

• graph-lines-points.

• graph-area.

• graph-pie.

• Graphsize. Select the chart size in pixels. This selection is only necessary if a graphical
output format has been chosen under "Format". All graphic sizes that can generally be used
are defined by the OTRS administrator in SysConfig. When configuring the report, the agent
can pre-select all relevant formats.

• Sum rows. Indicates whether the report is amended by a column, whose cells contain the
sum of the respective row.

• Sum columns. Indicates whether the report is amended by a row, whose cells contain the
sum of the respective column.

• Cache. Specifies if the generated report should be cached in the filesystem. This saves
computing power and time if the report is called up again, but it should only be used if the
report's content is no longer changing.

Caching is automatically prevented if the report contains no time designation values, or if
a time designation value points to the future.

If a cached report is edited, all cached data is deleted.

• Valid. This can be set to "invalid" if a pre-configured report must not be run temporarily for
any reason. The "Start" button in the bottom of the right panel is then no longer displayed.
The report can no longer be generated.

Stats module

144

2. Definition of the element for the X-axis. It is the configuration of the element used for the
depiction of the X-axis or, if tables are used, of the column name applied to the X-axis (see
Figure).

Figure: Definition of the element for the X-axis.

First of all, an element is selected using the option field. Then two or more attributes of the
element must be selected. If no attributes are selected, all attributes are used including those
added after the configuration of the report.

If the "Fixed" setting is disabled, the agent generating the report can change the attributes of
the respective element in the "View" user interface.

Time elements are different as time period and scale have to be stated. Type and number of
elements result from the used dynamic object and vary depending on it.

If all input is correct, the "Next" button leads to the "Value series" form. It is also possible to
go back to editing earlier sections.

3. Specification of the value series.

In the third step of the report configuration, the value series are defined (see Figure below).
They will later form the individual graphs or the various series within a tabular view.

Stats module

145

Figure: Definition of the value series.

If an element is selected, each chosen attribute will correspond to a value series (see the
Example 19-1 below).

Example 19.1. Definition of a value series - one element

Element Queue:

• Value series 1 = Raw

• Value series 2 = Junk

•

If two elements are selected, each selected attribute of the first element is combined with an
attribute of the second element to form a value series (see Example 19-2 below).

Example 19.2. Definition of a value series - two elements

Element 1 queue, Element 2 status:

• Value chain 1 = Raw - open

• Value series 2 = Raw - successfully closed

• Value series 3 = Junk - open

• Value series 4 = Junk - successfully closed

Selection of three or more elements is not allowed.

Additionally the same conditions apply to the selection of the attributes and the "Fixed"
checkbox as to the "X-axis" selection:

• If no attributes of the element are selected, all attributes are used, including those added
after the configuration of the report.

Stats module

146

• If the "Fixed" setting is disabled, the agent generating the report can change the attributes
of the respective element.

4. Setting restrictions to the report. This is the fourth and final step of the configuration (see
Figure below). The restrictions serve to limit the results to the selected criteria. In many cases,
no restrictions at all may be set up.

Figure: Definition of restrictions.

After all the restrictions are set up, the configuration of the report is completed by pressing
the "Finish" button.

Import
The Import user interface (see Figure below) can be accessed by choosing from the navigation
bar, the link "Statistics", then "Import". Alternately, pressing the Import button on the Overview
screen achieves the same result. "rw" rights to the report are required.

Figure: The Import user interface.

Stats module

147

Facilitates the import of reports and is, when combined with the export function of the module,
a very handy functionality. Stats can be created and tested conveniently on test systems, then
imported into the production system.

The import is effected by an easy file upload. The "View" user interface of the imported report
is opened automatically afterwards.

Administration of the stats module by the
OTRS administrator

This section provides information about the tasks and responsibilities of the OTRS administrator
dealing with the statistics module.

Permission settings, Groups and Queues
No new queues and/or groups are created when the stats module is installed.

The default configuration of the module registration gives all agents with "stats" group
permissions access to the stats module.

Access according to permission settings:

• rw. Allows configuring statistics and reports.

• ro. Permits generating pre-configured statistics and reports.

The OTRS administrator decides whether agents with the permission to generate pre-configured
reports are allocated ro rights in the "stats" group, or if their respective groups are added in the
module registration in SysConfig.

SysConfig
The SysConfig groups Framework:Core::Stats, Framework:Core::Stats::Graph and
Framework:Frontend::Agent::Stats contain all configuration parameters for the basic set-up
of the statistics module. Moreover, the configuration parameter $Self->{'Frontend::Module'}-
>{'AgentStats'} controls the arrangement and registration of the modules and icons within the
statistics module.

Administration of the stats module by the
system administrator

Generally, no system administrator is needed for the operation, configuration and maintenance
of the statistics module. However, a little background information for the system administrator
is given at this point.

Note
File paths refer to subdirectories of the OTRS home directory (in most cases/opt/
otrs).

Stats module

148

Data base table
All report configurations are implemented and administrated in XML, and therefore stored in the
database table "xml_storage". Other modules whose content is presented in xml format use this
table as well.

List of all files
The following files are necessary for the stats module to work accurately:

• Kernel/System/Stats.pm

• Kernel/Modules/AgentStats.pm

• Kernel/System/CSV.pm

• Kernel/Output/HTML/Standard/AgentStatsOverview.dtl

• Kernel/Output/HTML/Standard/AgentStatsDelete.dtl

• Kernel/Output/HTML/Standard/AgentStatsEditSpecification.dtl

• Kernel/Output/HTML/Standard/AgentStatsEditRestrictions.dtl

• Kernel/Output/HTML/Standard/AgentStatsEditXaxis.dtl

• Kernel/Output/HTML/Standard/AgentStatsEditValueSeries.dtl

• Kernel/Output/HTML/Standard/AgentStatsImport.dtl

• Kernel/Output/HTML/Standard/AgentStatsPrint.dtl

• Kernel/Output/HTML/Standard/AgentStatsView.dtl

• Kernel/System/Stats/Dynamic/Ticket.pm

• bin/otrs.GenerateStats.pl

Caching
Whether the results of a statistic are to be cached or not can be setup in the configuration.
Cached report results are stored as files in the var/tmpdirectory of the OTRS installation (in
most cases /opt/otrs/var/tmp).

Cached stats can be recognized by the "Stats" prefix.

If the data is lost, no major damage is caused. The next time the report is called up, the stats
module will not find the file any more and so will generate a new report. Of course this will
probably take a little longer to run.

otrs.GenerateStats.pl
This file is saved in the bindirectory. It facilitates the generation of report in the command line.

Stats module

149

As an example, see the command line call in the following script.

bin> perl otrs.GenerateStats.pl -n 10004 -o /output/dir

Script: Generating a report from the command line.

A report from the stat configuration "Stat# 10004" is generated and saved as csv in the /output/
dir directory.

The generated report can also be sent as an e-mail. More information can be called up with the
command in the script below.

bin> perl otrs.GenerateStats.pl --help

Script: Getting information about the otrs.GenerateStats.pl file.

Automated stat generation - Cronjob
It usually does not make sense to generate reports manually via the command line, as the stats
module has a convenient graphical user interface. However, generating reports manually does
make sense when combined with a Cronjob.

Imagine the following scenario: On the first day of every month, the heads of department want to
receive a report for the past month. By combining a cronjob and command line call the reports
can be sent to them automatically by e-mail.

Static stats
The stats module facilitates the generation of static statistics. For every static stat a file exists
in which its content is precisely defined.

This way, very complex stats can be generated. The disadvantage is that they are not particularly
flexible.

The files are saved in the directory Kernel/System/Stats/Static/.

Using old static stats
Prior OTRS versions 1.3 and 2.0 already facilitated the generation of stats / reports. Various
reports for OTRS versions 1.3 and 2.0 which have been specially developed to meet customers'
requirements can be used in recent OTRS versions too.

The files must merely be moved from the Kernel/System/Stats/ path to Kernel/System/
Stats/Static/. Additionally the package name of the respective script must be amended by
"::Static".

The following example shows how the first path is amended.

 package Kernel::System::Stats::AccountedTime;

 package Kernel::System::Stats::Static::AccountedTime;

Stats module

150

Default stats
"It is not always necessary to reinvent the wheel..."

The stats module provides various default reports. Reports which are of interest for all OTRS
users will in future be added to the default reports set of the stats module package. Default
reports are saved in the stats module xml format in thescripts/test/sample/ directory.

151

Chapter 20. Generic Interface
The OTRS Generic Interface consists of a multiple layer framework that lets OTRS communicate
with other systems via a web service. This communication could be in two different directions:

• OTRS as Provider: OTRS acts as a server listening to requests from the External System,
processing the information, performing the requested action, and answering the request.

• OTRS as Requester: OTRS acts as a client collecting information, sending the request to the
Remote System, and waiting for the response.

Generic Interface Layers
Generic Interface is build based on a layer model, to be flexible and easy to customize.

A layer is a set of files, which control how the Generic Interface performs different parts of a web
service. Using the right configuration one can build different web services for different External
Systems without creating new modules.

Note
If the Remote System does not support the current bundled modules of the Generic
Interface, special modules need to be developed for that specific web service.

The list of provided Generic Interface modules shipped with OTRS will be updated and
increased over time.

Generic Interface

152

Figure: The graphical interface layers.

Network Transport
This layer is responsible for the correct communication with the Remote System. It receives
requests and generates responses when acting as provider, and generates requests and
receives responses when acting as requester.

Provider communication is handled by a new web server handle called "nph-genericinterface.pl".

Requester communication could be initiated during an event triggered by a Generic Interface
module or any other OTRS module. This event is catched by the event handler and depending
on the configuration the event will be processed directly by the requester object or delegated to
the Scheduler (a separated deamon designed to process tasks asynchronously).

Data Mapping
This layer is responsible for translating data structures between OTRS and the Remote System
(data internal and data external layers). Usually Remote Systems have different data structures
than OTRS (including different values and names for those values), and here resides the
importance of the layer to change the received information into something that OTRS can
understand and on the opposite way send the information to each Remote System using their
data dictionaries.

Example: "Priority" (OTRS) might be called "Prio" in a remote system and it could be that value
"1 Low" (OTRS) should be mapped to "Information" on the remote system.

Controller
Controllers are collections of similar Operations or Invokers. For example, a Ticket controller
might contain several standard ticket operations. Custom controllers can be implemented,
for example a "TicketExternalCompany" controller which may contain similar functions as the
standard Ticket controller, but with a different data interface, or function names (to adapt to the
Remote System function names) or complete different code.

One application for Generic Interface could be to synchronize information with one Remote
System that only can talk with another Remote System of the same kind. In this case new
controllers needs to be developed and the Operations and Invokers has to emulate the Remote
System behavior in such way that the interface that OTRS exposes is similar to the Remote
System's interface.

Operation (OTRS as a provider)
An Operation is a single action that can be performed within OTRS. All operations have the
same programming interface, they receive the data into one specific parameter, and return a
data structure with a success status, potential error message and returning data.

Normally operations uses the already mapped data (internal) to call core modules and perform
actions in OTRS like: Create a Ticket, Update a User, Invalidate a Queue, Send a Notification,
etc. An operation has full access to the OTRS API to perform the action.

Invoker (OTRS as a requester)
An Invoker is an action that OTRS performs against a Remote System. Invokers use the OTRS
Core modules to process and collect the needed information to create the request. When the

Generic Interface

153

information is ready it has to be mapped to the Remote System format in order to be sent to
the Remote System, that will process the information execute the action and send the response
back, to either process the success or handle errors.

Generic Interface Communication Flow
Generic Interface has a defined flow to perform actions as a provider and as a requester.

This flows are described below:

OTRS as Provider
Remote Request:

1. HTTP request

• OTRS receives HTTP request and pass it through the layers.

• The provider module in in charge to execute and control this actions.

2. Network Transport

• The network transport module decodes the data payload and separates the operation name
from the rest of the data.

• The operation name and the operation data are returned to the provider.

3. Data External

• Data as sent from the remote system (This is not a module-based layer).

4. Mapping

• The data is transformed from the External System format to the OTRS internal format as
specified in the mapping configuration for this operation (Mapping for incoming request
data).

• The already transformed data is returned to the provider.

5. Data Internal

• Data as transformed and prepared to be passed to the operation (This is not a module
based layer).

6. Operation

• Receives and validates data.

• Performs user access control.

• Executes the action.

OTRS Response:
1. Operation

Generic Interface

154

• Returns result data to the provider.

2. Data Internal

• Data as returned from operation.

3. Mapping

• The data is transformed back to the Remote system format as specified in the mapping
configuration (Mapping for outgoing response data).

• The already transformed data is returned to the provider.

4. Data external

• Data as transformed and prepared to be passed to Network Transport as response.

5. Network Transport

• Receives the data already in the Remote System format.

• Constructs a valid response for this network transport type.

6. HTTP response

• The response is sent back to the web service client.

• In the case of an error, an error response is sent to the remote system (e.g. SOAP fault,
HTTP error, etc).

OTRS as Requester
OTRS Request:

1. Event Trigger Handler

• Based on the web service configuration determines if the request will be synchronous or
asynchronous.

• Synchronous

• A direct call to the Requester is made in order to create a new request and pass it
through the layers.

• Asynchronous

• Create a new Generic Interface (Requester) task for the OTRS Scheduler (by
delegating the request execution to the Scheduler, the user experience could be highly
improved, otherwise all time needed to prepare the request and the remote execution
will be added to the OTRS Events that trigger those requests).

• In its next cycle the Scheduler process reads the new task and creates a call to the
Requester that will create a new request and pass it through the layers.

2. Invoker

Generic Interface

155

• Receives data from the event.

• Validates received data (if needed).

• Call core modules to complement the data (if needed).

• Return the request data structure or send a Stop Communication signal to the requester,
to gracefully cancel the request.

3. Data Internal

• Data as passed from the invoker (This is not a module based layer).

4. Mapping

• The data is transformed to the Remote system format as specified in the mapping
configuration (Mapping for outgoing response data).

• The already transformed data is returned to the requester.

5. Data External

• Data as transformed and prepared for sending to the remote system.

6. Network Transport

• Receives the remote operation name and the data already transformed to the Remote
System format from the requester.

• Constructs a valid request for the network transport.

• Sends the request to the remote system and waits for the response

Remote Response:
1. Network transport

• Receives the response and decodes the data payload.

• Returns the data to the requester.

2. Data External

• Data as received from the Remote System

3. Mapping

• The data is transformed form the External System format to the OTRS internal format as
specified in the mapping configuration for this operation (Mapping for incoming response
data).

• The already transformed data is returned to the requester.

4. Data Internal

• Data as transformed and ready to be passed back to the requester.

Generic Interface

156

5. Invoker

• Receives return data.

• Handles the data as needed by specifically by each Invoker (included error handling if any).

• Return the Invoker result and data to the Requester.

6. Event Handler or Scheduler

• Receives the data from the Requester, in the case of the Scheduler this data might contain
information to Re-Schedule the task immediately or in the future.

Web Services
A Web Service is a communication method between two systems, in our case OTRS and a
Remote System.

The heart of the Web Service is its configuration, where is defined what actions the web service
can perform internally (Operation), what can actions the OTRS request can perform Remote
System (Invokers), how data is converted from one system to the other (Mapping), and over
which protocol the communication will take place (Transport)

The Generic Interface is the framework that makes it possible to create Web Services for OTRS
in a pre-defined way, using already made building blocks that are independent from each other
and interchangeable.

Web Service Graphical Interface
The web service graphical user interface (GUI) is a tool that allows to construct complex web
service configurations in a friendly and nice interface. It allows to:

• Create and Delete web services.

• Import and Export configurations (in YAML file format) for existing web services.

• View, Revert and Export old configurations for existing web services in the Web Service History
screen.

• Track all communication logs for each web service in the Debugger screen.

Web Service Overview
The "Web Services" link in the main screen of Admin Interface (in the System Administration
box) leads to the web services overview screen, where you are able to manage your web service
configurations. You can add new web services or change the configuration of the existing ones
from this screen.

Every web service configuration screen has in the upper part of the screen a navigation path in
a "bread crumbs" style. This navigation path is useful to know exactly in which part of the web
service configuration we are, and also we can jump back to any level of the configuration at any
time (this action will not save any changes).

Generic Interface

157

Note
To create a new web service, press the button "Add web service", and provide the
needed information.

Figure: Web services overview.

Web Service Add
The only required field in this part is the web service "Name" that needs to be unique in the
system and non empty. Other fields are also necessary for the configuration like the "Debug
Threshold" and "Validity" but these fields are already filled with the default value for each list.

The default value for "Debug Threshold" is "debug", under this configuration all communication
logs are registered in the database, each Debug Threshold value is more restrictive and discard
communication logs set for lower values.

Debug Threshold levels (from lower to upper)

• Debug

• Info

• Notice

• Error

Generic Interface

158

It is also possible to define the network transport protocol for "OTRS as Provider" and "OTRS
as requester".

Click on the "Save" button to register the new web service in the database or click "Cancel" to
discard this operation. You will now be returned to the web service overview screen.

If you already have a web service configuration file in YAML format you can click on the "Import
web service" button on the left side of the screen. For more information on importing web services
please check the next section "Web Service Change".

Note
To change or add more details to a web service, click on the web service name in the
web service overview screen.

Figure: Web services add.

Web Service Change
On this screen you have a complete set of functions to handle every part of a web service. On the
left side in the action column you can find some buttons that allows you to perform all possible
actions on a web service:

• Clone web service.

• Export web service.

• Import web service.

Generic Interface

159

• Configuration History.

• Delete web service.

• Debugger.

Note
"Configuration history" and "Debugger" will lead you to different screens.

Web Service Clone
To clone a web service, you need to click on the "Clone web service" button, a dialog will be
shown where you can use the default name or set a new name for the (cloned) web service.

Note
Remember the name of the web service must be unique within the system.

Click on "Clone" button to create the web service clone or "Cancel" to close the dialog.

Figure: Web service clone.

Web Service Export
The "Export web service" button gives you the opportunity to dump the configuration of the current
web service into a YAML file, download it and store it on your file system. This can be specially

Generic Interface

160

useful if you want to migrate the web service from one server to another, for example from a
testing environment to a production system.

Warning
All stored passwords in the web service configuration will be exported as plain text.

Right after clicking the "Export web service" button a save dialog of your browser will appear,
just like when you click on a file download link on a web page.

Note
Each browser on each operating system has its own save dialog screen and style,
depending on the browser and its configuration it is possible that no dialog is shown and
the file is saved to a default directory on your file system. Please check your browser
documentation for more specific instructions if needed.

Figure: Web services export.

Web Service Import
A valid web service configuration YAML file is required to use the import web service feature.
Click on the "Import web service" button, browse for the configuration file or provide the complete
path in the input box.

Click "Import" button to create a new web service from a file or "Cancel" to close the dialog.

Generic Interface

161

Note
The web service name will be taken from the configuration file name (e.g. if the file name
is MyWebservice.yml the resulting web service will be named MyWebservice). If a web
service is registered in the system with the same name as the web service that you want
to import, the system will lead you to the web service change screen to let you change
the name of the imported web service.

Figure: Web services import.

Web Service History
Every change to the web service configuration creates a new entry in the web service history
(as a journal). The web service history screen displays a list of all configuration versions for a
web service. Each row (version) in the "Configuration History List" represents a single revision
in the web service history.

Click on one of the rows to show the whole configuration as it was on that particular date / time.
The configuration will be shown in the "History details" section of this screen. Here you are also
able to export the selected web service configuration version or to restore that version into the
current web service configuration.

The "Export web service configuration" behaves exactly as the "Export web service" feature in
the web service change screen. For more information refer to that section.

If changes to the current web service configuration does not work as expected and it is not easy
to revert the changes manually, you can click on the "Revert web service configuration" button.

Generic Interface

162

This will open a dialog to ask you if you are sure to revert the web service configuration. Click
"Revert web service configuration" in this dialog to replace the current configuration with the
selected version, or click "Cancel" to close the dialog.

Warning
Remember that any passwords stored in the web service configuration will be exported
as plain text.

Please be careful when you restore a configuration because this can't be undone.

Figure: Web service history.

Web Service Delete
Sometimes it is necessary to delete a web service completely. To do this you can press on the
"Delete web service" button and a new dialog will appear asking for confirmation.

Clink on "Delete" to confirm the removal of the web service or on "Cancel" to close the dialog.

Warning
Delete a web service can't be undone, please be careful when deleting a web service.

Generic Interface

163

Figure: Web service delete.

Web Service Debugger
The Debugger stores the log of a web service. In the debugger screen you can track all the web
service communications for either provider or requester types.

When this screen is shown the request list starts to load. After the list is fully filled you can choose
one of the rows (that means a communication sequence) to check its details. This details will
appear in a box below.

You can narrow the communication list using the filter on the right part of the screen. You can
filter by:

• Communication type (provider or requester)

• Date: before and / or after a particular date

• The remote IP Address

• A combination of all.

After filter settings are set, push the "Refresh" button and a new list will be displayed meeting
your search criteria.

Note
Depending on the search criteria for the filters the new list could return no results.

Generic Interface

164

On the left part of the screen under the action column you can select "Go back to the web service"
or clear the debugger log by pushing the "Clear" button. This will open a dialog that ask you
to confirm erasing of the log. Click "Clear" in the dialog button to perform the action or click on
"Cancel" to close this dialog.

In the "Request details" section you can see all the details for the selected communication. Here
you can track the complete flow and check for possible errors or confirm success responses.

Figure: Web service debugger.

Web Service Configuration Change
Returning to the web service change screen, now we are going to review the right side of it. Here
we have the possibility to modify all the general data for a web service such as name, description,
debug threshold, etc. Also there are two more sections below that allows us to modify specific
parameters for communication types "OTRS as Provider" and "OTRS as Requester".

The web service configuration needs to be saved on each level. This means that if a setting is
changed, links to other, deeper parts of the configuration will be disabled forcing to save the
current configuration level. After saving the disabled links will be re-enabled again allowing you
to continue with the configuration.

On the "OTRS as provider" section it is possible to set or configure the network transport protocol.
Only network transport backends that are registered are shown on the list. To configure the
network transport click on the "Configure" button. It is also possible to add new operations in
this box. To do this select one of the available operations from the "Add Operation" list. This will

Generic Interface

165

lead you to the operation configuration screen. After saving the new operation it will be listed
in the table above.

"OTRS as requester" is very similar to the previous one, but instead of "operations" you can add
invokers here.

Click the "Save" button to save and continue configuring the web service, "Save and finish" to
save and return to the web service overview screen, or "Cancel" to discard current configuration
level changes and return to web service overview screen.

Figure: Web services change.

Note
Like the other Generic Interface configuration screens such as Network Transport,
operation, Invoker and Mapping, the initial configuration (add) screen will only present
two options: "Save" and "Cancel", when the configuration is re-visited then a new option
"Save and Finish" will appear. The behavior of this feature is defined below.

"Save" will store the current configuration level in the database and it will return to the
same screen to review your changes or to configure deeper settings.

Generic Interface

166

"Save and Finish" will store the current configuration level in the database and it will
return to the previous screen in the configuration hierarchy (to the immediate upper
configuration level).

"Cancel" will discard any configuration change to the current configuration level and will
return to the previous screen in the configuration hierarchy.

Web Service Provider Network Transport

In future the list of available network transports will be increased. Currently only the
"HTTP::SOAP" transport is available. Each transport has different configuration options to setup
and they might use different frontend modules to configure it, but mostly they should look similar
to the "HTTP::SOAP" transport configuration module.

For "HTTP::SOAP" protocol as provider the configuration is quite simple. There are only two
settings: "Namespace" and "Maximum message length". These fields are required. The first one
is a URI to give SOAP methods a context, reducing ambiguities, and the second one it's a field
where you can specify the maximum size (in bytes) for SOAP messages that OTRS will process.

Figure: Web service provider network transport.

Web Service Operation

The actions that can be performed when you are using OTRS as a provider are called
"Operations". Each operation belongs to a controller. Controllers are collections of operations or
invokers, normally operations from the same controller need similar settings and shares the same
configuration dialog. But each operation can have independent configuration dialogs if needed.

Generic Interface

167

Name, Description, Backend, and Mappings are fields that normally appear on every operation,
other special fields can appear in non default configuration dialogs like the Remote System GUID
field in SolMan Controller operations.

Normally there are two mapping configuration sections on each operation, one for the incoming
data and another one for the outgoing data. You can choose different mapping types (backends)
for each mapping direction, since their configuration is independent from each other and also
independent from the operation backend. The normal and most common practice is that the
operation uses same mapping type in both cases (with inverted configuration). The complete
mapping configuration is done in a separate screen which depends on the mapping type.

The operation backend is pre-filled and is not editable. You will see this parameter when you
choose the operation on the web service edit screen. The field is only informative.

In the left part of the screen on the action column you have the options: "Go back to web
service" (discarding all changes since the last save) and "Delete". If you click on the last one,
a dialog will open and ask you if you like to remove the operation. Click on "Delete" button to
confirm the removal of the operation and it configuration or "Cancel" to close the delete dialog.

Figure: Web service operation.

Web Service Provider Transport
The network transport configuration for the requester is similar to the configuration for the
provider. For the Requester "HTTP::SOAP" network transport there are more fields to be set.

Apart from the "Endpoint" (URI of the Remote System web service interface to accept requests)
and "Namespace" which are required fields, you can also specify:

Generic Interface

168

• Encoding (such as utf-8, latin1, iso-8859-1, cp1250, etc) for the SOAP message.

• SOAPAction Header: you can use this to send an empty or filled SOAPAction header. Set to
"No" and the SOAPAction header on the SOAP message will be an empty string, or set to
"Yes" to send the soap action in Namespace#Action format and define the separator (typically
"/" for .Net web services and "#" for the rest).

• Authentication: to set the authentication mechanism, set to "-" to not use any authentication or
select one from the list and the detail fields will appear.

Note
Currently only the "BasicAuth" (HTTP) authentication mechanism is implemented. You
can decide whether or not to use it depending on the Remote System configuration. If
used, you must provide the User Name and the Password to access the remote system.

Warning
If you supply a password for authentication and after you export the web service to a
YAML file this password will be revealed and will be written into a plain text string inside
the YAML file. Be aware of it and take precautions if needed.

Figure: Web service requester network transport.

Web Service Invoker
The actions that can be performed when you are using OTRS as a requester are called
"Invokers". Each invoker belongs to a controller (controllers are collections of operations or

Generic Interface

169

invokers), normally invokers from the same controller need similar settings and share the same
configuration dialogs. Each invoker can have independent configuration dialogs if needed.

Name, Description, Backend, and Mappings are fields that normally appear on every invoker,
as well as the list of event triggers other special fields can appear on non default configuration
dialogs like the Remote System GUID field in SolMan Controller invokers.

Normally there are two mapping configuration sections for each invoker, one for the incoming
data and another one for the outgoing data. You can choose different mapping types (backends)
for each mapping direction, since their configuration is independent from each other and also
independent from the invoker backend. The normal and most common practice is that the invoker
uses the same mapping type in both cases, with inverted configuration. The complete mapping
configuration is done in a separate screen, which depends on the mapping type.

The invoker backend is pre-filled and is not editable. You will see this parameter when you choose
the invoker on the web service edit screen. The field is only informative. informative.

Event triggers are events within OTRS such as "TicketCreate", "ArticleSend", etc. These can
act as triggers to execute the invoker. Each invoker needs to have at least one event trigger
registered, or the invoker will be useless, because it will never be called. The asynchronous
property of the event triggers define if the OTRS process will handle the invoker or if it will be
delegated to the Scheduler.

Note
The OTRS Scheduler is a separated process that executes tasks in the background.
Using this the OTRS process itself will not be affected if the Remote System takes a long
time to respond, if it is not available or if there are network problems. If you don't use the
scheduler using web services can make OTRS slow or non-responsive. Therefore it is
highly recommend to use asynchronous event triggers as often as possible.

To add an Event trigger first select the event family from the first list, then the event name from
the second list, then set the asynchronous property (if unchecked means that the event trigger
will not be asynchronous) and then click on the plus button. A new event trigger will be created
and it will be listed on the invoker "Event Triggers" list.

To delete an Event trigger, simply locate the event trigger to be deleted in the "Event Triggers"
list and click on the trash icon at the end of the row. This will open a dialog that ask you if you
are sure to delete the event trigger. Click "Delete" to remove the event trigger from the list, or
"Cancel" to close the dialog.

In the left part of the screen on the action column you have the options: "Go back to web
service" (discarding all changes since the last save) and "Delete". If you click on the last one, a
dialog will emerge and ask you if you like to remove the invoker. Click on the "Delete" button to
confirm the removal of the invoker and its configuration or "Cancel" to close the delete dialog.

Generic Interface

170

Figure: Web service invoker.

Web Service Mapping

There are cases where you need to transform the data from one format to another (map or change
data structure), because normally a web service is used to interact with a Remote System, that
is highly probable that is not another OTRS system and / or could not understand the OTRS data
structures and values. In these cases some or all values has to be changed, and sometimes
even the names of the values (keys) or sometimes the complete structure, in order to match with
the expected data on the other end. To accomplish this task the the Generic Interface Mapping
Layer exists.

Each Remote System has it own data structures and it is possible to create new mapping modules
for each case (e.g. there is a customized mapping module for SAP Solution Manager shipped
with OTRS), but it is not always necessary. The module Mapping::Simple should cover most of
the mapping needs.

Note
When Mapping::Simple does not cover all mapping needs for a web service a new
mapping module should be created. To learn more about how to create new mapping
modules please consult the OTRS Development Manual.

This module gives you the opportunity to set default values to map for each key or value for the
whole communication data.

Generic Interface

171

At the beginning of the screen you will see a general section where you can set the default rules
that will apply for all the unmapped keys and values. there are three options available, these
options are listed below:

• Keep (leave unchanged): doesn't touch the keys or values in any way.

• Ignore (drop key/value pair): when this is applied to the key it deletes the key and value,
because when a key is deleted then in consequence it associated value is deleted too. When
this is applied to the value, only the value is deleted, keeping the key, that now will be
associated to an empty value.

• MapTo (use provided key or value as default): all keys and / or values without a defined map
rule, will use this as default, when you select this option a new text field will appear to set
this default.

Clicking on the "+" button for new key map, will display a new box for a single mapping
configuration. You can add as many key mappings as needed. Just click on the "+" button again
and a new mapping box will appear below the existing one. From this mapping boxes you can
define a map for a single key, with the next options:

• Exact value(s): the old key string will be changed to a new one if the old key matches exactly.

• Regular expression: The key string will be replaced following a regular expression rule.

Pressing the new value map "+" button will display a new row for a value map. Here also is
possible to define rules for each value to be mapped with the same options as for the key map
(Exact value and Regular expression). You can add as many values to map as needed, and if
you want to delete one of them, just click on the "-" button for each mapping value row.

Deleting the complete key mapping section (box) is possible, just push on the "-" button located
on the up right corner of each box that you want to delete.

If you need to delete a complete mapping configuration: go back to the corresponding operation
or invoker screen, look for the mapping direction that you select before and set its value to "-",
and save the configuration to apply changes.

Generic Interface

172

Figure: Web service mapping.

Web Service Command Line Interface
The Command Line Interface (CLI) is fast way to work with the web services. It consists of a set
of tools can be use to perform basic operations like:

• Create, Update, Read, List and Delete web services based on YAML files.

• Read the Debugger log, with filter options.

Note
You don't need to use the CLI to work with web services. Integrated into the Admin
interface there is a complete set of screens to interact with every part of the web services.
Please read the web service GUI section included in this manual.

Web Service Configuration
The "WebserviceConfig.pl" was developed in order to create basic, but fast and powerful tool to
work with web service configurations. It gives you the ability to perform the following actions:

• Add: to create web services using a YAML file as the configuration source.

• Update: to change an existing web service, the configuration can be changed using a different
or modified YAML file.

Generic Interface

173

• Read: to get the current web service configuration displayed on the screen.

• List: to get a complete list of all the web services registered in system.

• Delete: to delete a web service from the system. Be careful when you use it, because this
action can't be undone.

Warning
A web service READ operation will display all the configuration as plain text on the
screen, including any stored passwords. Please be aware of this and take the needed
precautions!

Example: Creating a new web service configuration:

 shell> OTRS_HOME/bin/otrs.WebserviceConfig.pl -a write
 -n <webservice_name> -f /path/to/yaml/file

Also you can use 'otrs.WebserviceConfig.pl' with following options:

• -a read -i <webservice_id> - To read a stored configuration.

• -a write -n <webservice_name> -f /path/to/yaml/file - To create a new web service.

• -a write -i <webservice_id> -f /path/to/yaml/file - To update a web service.

• -a list - To list available web services.

• -a delete -i <webservice_id> - To delete a web service.

Web Service Debugger
Another available tool on the command line is the "otrs.GenericInterfaceDebugRead.pl" script,
which is an interface to search for web service debugger log entries.

Example: Searching for debugger log entries:

 shell> bin/otrs.GenericInterfaceDebugRead.pl

Optional parameters can be used for the "otrs.GenericInterfaceDebugRead.pl" script:

• -c - to filter by Communication ID (md5sum format).

• -t - to filter by CommunicationType ('Provider' or 'Requester').

• -a - to filter by date (At or After a date).

• -b - to filter by date (At or Before a date).

• -i - to filter by IP Address (must be valid IPv4 or IPv6 address).

Generic Interface

174

• -w - to filter by Web Service ID.

• -d - to include detailed communication data.

Example: Searching for debugger log entries with all parameters:

 shell> ./otrs.GenericInterfaceDebugRead.pl -c
 a7cc4d9f5c70387a9bfbe1351bc88966 -t Provider -a '2011-07-22 00:00:00'
 -b '2011-07-26 00:00:00' -i 127.0.0.1 -w 123 -d 1

Note
It is highly recommended to include at least one of the filter options listed above, and
even more if the "-d" option is selected, because a lot of information can be retrieved
from the data base and displayed on the screen, this could result in slow response times
and much more information than what you really needed.

Web Service Configuration
From its design the web services were conceived to be portable from one OTRS system to
another, e.g. from a test or development environment to a production system. Therefore it was
needed to have an easy way to extract the web service configuration from the database, and
import it to another. To accomplish this task Generic Interface uses YAML files as the web
services configuration basis.

Why YAML? YAML is a markup language designed to be human friendly to read and write
(it is easier to understand than JSON), it does not have some of the limitations of XML like
numeric tags, it is open, standardized, and is complete enough to store the whole web service
configuration.

Note
To learn more about YAML please visit http://www.yaml.org/.

The following is a web service configuration file example in YAML format:

Debugger:
 DebugThreshold: debug
Description: This an example of a web service configuration
Provider:
 Operation:
 CloseIncident:
 Description: This is a SolMan test operation
 MappingInbound: {}
 MappingOutbound: {}
 RemoteSystemGuid: ''
 Type: SolMan::CloseIncident
 Test:
 Description: This is a test operation

http://www.yaml.org/

Generic Interface

175

 MappingInbound:
 Config:
 KeyMapDefault:
 MapTo: ''
 MapType: Keep
 KeyMapExact:
 Prio: Priority
 ValueMap:
 Priority:
 ValueMapExact:
 Critical: 5 Very High
 Information: 1 Very Low
 Warning: 3 Normal
 ValueMapDefault:
 MapTo: 3 Normal
 MapType: MapTo
 Type: Simple
 MappingOutbound:
 Config:
 KeyMapDefault:
 MapTo: ''
 MapType: Ignore
 KeyMapExact:
 Priority: Prio
 ValueMap:
 Prio:
 ValueMapExact:
 1 Very Low: Information
 3 Normal: Warning
 5 Very High: Critical
 ValueMapDefault:
 MapTo: ''
 MapType: Ignore
 Type: Simple
 Type: Test::Test
 Transport:
 Config:
 MaxLength: 10000000
 NameSpace: http://www.example.com/actions
 Type: HTTP::SOAP
RemoteSystem: remote.system.description.example.com
Requester:
 Invoker:
 Test:
 Description: This is a test invoker
 Events:
 - Asynchronous: 1
 Event: TicketCreate
 - Asynchronous: 0
 Event: ArticleUpdate
 MappingInbound:
 Type: Simple
 MappingOutbound:
 Type: Simple

Generic Interface

176

 Type: Test::Test
 Transport:
 Config:
 Authentication:
 Password: '*******'
 Type: BasicAuth
 User: otrs
 Encoding: utf-8
 Endpoint: http://www.example.com:8080/endpoint
 NameSpace: http://www.example.com/actions
 SOAPAction: Yes
 SOAPActionSeparator: '#'
 Type: HTTP::SOAP

Configuration Details
General

• Description: a short text that describes the web service.

• RemoteSystem: a short description of the Remote System.

• Debugger: a container for the debugger settings.

• Provider: a container for the provider settings.

• Requester: a container for the requester settings.

Debugger
• DebugThreshold: the debugger level

Possible Values

• debug: all logs are stored in the database.

• info: info, notice and error level logs are stored in the database.

• notice: notice and error level logs are stored in the database.

• error: only error level logs are stored in the database.

Provider
• Operation: a container for each operation settings.

• Transport: a container for provider network transport settings.

Operation

• <OperationName>: Unique name for the operation, container for its own operation settings
(cardinality 0..n, but not duplicate).

Generic Interface

177

<OperationName>

This section is based on operations from type "Test::Test" other operations might contain more
or different settings.

• Description: a short text that describes the operation.

• MappingInbound: a container for the mapping settings for the incoming request data.

• MappingOutbound: a container for the mapping settings for the outgoing response data.

• Type: the operation backend, in Controller::Operation format.

MappingInbound

This section is based on mappings from type "Simple". Other mappings might contain more or
different settings.

• Config: a container for this mapping settings.

• Type: the mapping backend.

Config

• KeyMapDefault: a container for all non mapped keys settings.

• ValueMapDefault: a container for all non mapped values settings.

• KeyMapExact: a container for all exact key mappings (cardinality 0 .. 1).

• KeyMapRegEx: a container for all regular expression key mappings (cardinality 0 .. 1).

• ValueMap: a container for all value mappings (cardinality 0 .. 1).

KeyMapDefault

• MapTo: the new value to be used (only applicable if MapType is set to MapTo).

• MapType: the rule for the mapping.

Possible Values

• Keep: leave unchanged.

• Ignore: drop.

• MapTo: change to the MapTo value.

ValueMapDefault

Similar to KeyMapDefault.

KeyMapExact

• <oldkey>: <newkey> (cardinality 0 .. n but not duplicate).

KeyMapRegEx

• <oldkey(RegEx)>: <newkey> (cardinality 0 .. n but no duplicates).

Generic Interface

178

ValueMap

• <newkey>: a container for value mappings for this new key (cardinality depends on the new
keys from KeyMapExact and KeyMapRegEx).

<newkey>

• ValueMapExact: a container for all exact value mappings (cardinality 0 .. 1).

• ValueMapRegEx: a container for all regular expression value mappings (cardinality 0 .. 1).

valueMapExact

• <oldvalue>: <newvalue> (cardinality 0 .. n but not duplicate).

ValueMapRegEx

• <oldvalue(RegEx)>: <newvalue> (cardinality 0 .. n but not duplicate).

MappingOutbound

Same as MappingInbound.

Transport

This section is based on the provider network transport HTTP::SOAP, other transports might
contain more or different settings.

• Config: a container for the specific network transport configuration settings.

• Type: the provider network transport backend.

Config

• MaxLength: the maximum length in bytes to be read in a SOAP message by OTRS.

• NameSpace: an URI that gives a context to all operations that belongs to this web service.

Requester
• Invoker: a container for each invokers' settings.

• Transport: a container for requester network transport settings.

Invoker

• <InvokerName>: Unique name for the invoker, container for its own invoker settings (cardinality
0..n, but not duplicate).

<InvokerName>

This section is based on invokers from type "Test::Test" other invokers might contain more or
different settings.

• Description: a short text that describes the invoker

Generic Interface

179

• Events: a container for a unnamed list of event trigger settings.

• MappingInbound: a container for the mapping settings for the incoming response data.

• MappingOutbound: a container for the mapping settings for the outgoing request data.

• Type: the invoker backend, in Controller::Invoker format.

Events

• List Element: (cardinality 0 .. n)

• Asynchronous: to set if the invoker execution will be delegated to the Scheduler

Possible Values

• 0: not handled by the Scheduler.

• 1: handled by the Scheduler.

• Event: the name of the event trigger.

Possible Values (for ticket events)

• TicketCreate

• TicketDelete

• TicketTitleUpdate

• TicketUnlockTimeoutUpdate

• TicketQueueUpdate

• TicketTypeUpdate

• TicketServiceUpdate

• TicketSLAUpdate

• TicketCustomerUpdate

• TicketFreeTextUpdate

• TicketFreeTimeUpdate

• TicketPendingTimeUpdate

• TicketLockUpdate

• TicketArchiveFlagUpdate

• TicketStateUpdate

• TicketOwnerUpdate

• TicketResponsibleUpdate

Generic Interface

180

• TicketPriorityUpdate

• HistoryAdd

• HistoryDelete

• TicketAccountTime

• TicketMerge

• TicketSubscribe

• TicketUnsubscribe

• TicketFlagSet

• TicketFlagDelete

• TicketSlaveLinkAdd

• TicketSlaveLinkDelete

• TicketMasterLinkDelete

Possible Values (for article events)

• Article Events

• ArticleCreate

• ArticleFreeTextUpdate

• ArticleUpdate

• ArticleSend

• ArticleBounce

• ArticleAgentNotification

• ArticleCustomerNotification

• ArticleAutoResponse

• ArticleFlagSet

• ArticleFlagDelete

• ArticleAgentNotification

• ArticleCustomerNotification

MappingInbound

Same as Operation MappingInbound

Generic Interface

181

MappingOutbound

Same as Operation MappingInbound.

Transport

This section is based on the requester network transport HTTP::SOAP, other transports might
contain more or different settings.

• Config: a container for the specific network transport configuration settings.

• Type: the requester network transport backend.

Config

• Authentication: a container for authentication settings.

• Encoding: the SOAP Message request encoding

• Endpoint: the URI of the Remote Server web service to accept OTRS requests

• NameSpace: an URI that gives a context to all invokers that belongs to this web service.

• SOAPAction: to send an empty or filled SOAPAction header in the SOAP Message (in
"<NameSpace> <Separator> <Action>" format).

Possible Values

• YES: to send a filled SOAPAction header.

• No: to send an empty SOAPAction header.

• SOAPActionSeparator: to set the <Separator> of a filled SOAPAction header.

Possible Values

• '/': used for .net web services.

• '#': used for all the rest web services.

Authentication

• User: the privileged user name that has access to the remote web service.

• Password: the password for privileged user in plain text.

• Type: the type of authentication.

Connectors
A Connector is in essence set of actions called Operations if OTRS acts as a web service provider
or Invokers if OTRS acts as a web service requester. But it can also include special Mappings
or Transports

One Connector can have only Operations, Only Invokers or both. A connector can even use parts
of other connectors like the Mappings or Transports if they are not so specific for the Connector
that implements them.

Generic Interface

182

In another words a Connector is not limited to just the Controller layer but it can be extended to
Data Mapping or Network Transport layers if needed.

Due to the modular design of the Generic Interface a Connector can be seen as a plug-in; this
means that by adding Connectors the capabilities of the generic interface can be extended using:
OTRS Feature add ons, OTRS Custom modules, 3rd Party modules, and so on.

Bundled Connectors
Included with this version of OTRS the following connectors are ready to be used.

• Session

• Ticket

Session Connector
This connector is capable to create a valid SessionID that can be used in any other operation.

Provides:

• Operations:

• SessionCreate

Operations

SessionCreate

Creates a new new valid SessionID to be used in other operations from other connectors like
TicketCreate.

Note
To use the SessionID in other operations from other connectors is necessary that the
operation implements authentication by SessionID. all the rest of the bundled operations
are capable to accept a valid SessionID as an authentication method.

Possible Attributes:

 <SessionCreate>
 <!--You have a MANDATORY CHOICE of the next 2 items at this
 level-->
 <!--Optional:-->
 <UserLogin>?</UserLogin>
 <!--Optional:-->
 <CustomerUserLogin>?</CustomerUserLogin>
 <!--Optional:-->
 <Password>?</Password>
 </SessionCreate>

Generic Interface

183

Ticket Connector
This connector supplies the basic functionality to interact with tickets

Provides:

• Operations:

• TicketCreate

• TicketUpdate

• TicketGet

• TicketSearch

Operations

TicketCreate

Provides an interface to create ticket in OTRS, a ticket must contain an Article and can contain
several attachments, all defined Dynamic Fields can be also set on TicketCreate operation.

Possible Attributes:

 <TicketCreate>
 <!--You have a MANDATORY CHOICE of the next 3 items at this
 level-->
 <!--Optional:-->
 <UserLogin>?</UserLogin>
 <!--Optional:-->
 <CustomerUserLogin>?</CustomerUserLogin>
 <!--Optional:-->
 <SessionID>?</SessionID>
 <!--Optional:-->
 <Password>?</Password>
 <Ticket>
 <Title>?</Title>
 <!--You have a MANDATORY CHOICE of the next 2 items at
 this level-->
 <!--Optional:-->
 <QueueID>?</QueueID>
 <!--Optional:-->
 <Queue>?</Queue>
 <!--You have a CHOICE of the next 2 items at this level-->
 <!--Optional:-->
 <TypeID>?</TypeID>
 <!--Optional:-->
 <Type>?</Type>
 <!--You have a CHOICE of the next 2 items at this level-->
 <!--Optional:-->
 <ServiceID>?</ServiceID>
 <!--Optional:-->

Generic Interface

184

 <Service>?</Service>
 <!--You have a CHOICE of the next 2 items at this level-->
 <!--Optional:-->
 <SLAID>?</SLAID>
 <!--Optional:-->
 <SLA>?</SLA>
 <!--You have a MANDATORY CHOICE of the next 2 items at
 this level-->
 <!--Optional:-->
 <StateID>?</StateID>
 <!--Optional:-->
 <State>?</State>
 <!--You have a MANDATORY CHOICE of the next 2 items at
 this level-->
 <!--Optional:-->
 <PriorityID>?</PriorityID>
 <!--Optional:-->
 <Priority>?</Priority>
 <!--You have a CHOICE of the next 2 items at this level-->
 <!--Optional:-->
 <OwnerID>?</OwnerID>
 <!--Optional:-->
 <Owner>?</Owner>
 <!--You have a CHOICE of the next 2 items at this level-->
 <!--Optional:-->
 <ResponsibleID>?</ResponsibleID>
 <!--Optional:-->
 <Responsible>?</Responsible>
 <CustomerUser>?</CustomerUser>
 <!--Optional:-->
 <PendingTime>
 <Year>?</Year>
 <Month>?</Month>
 <Day>?</Day>
 <Hour>?</Hour>
 <Minute>?</Minute>
 </PendingTime>
 </Ticket>
 <Article>
 <!--You have a CHOICE of the next 2 items at this level-->
 <!--Optional:-->
 <ArticleTypeID>?</ArticleTypeID>
 <!--Optional:-->
 <ArticleType>?</ArticleType>
 <!--You have a CHOICE of the next 2 items at this level-->
 <!--Optional:-->
 <SenderTypeID>?</SenderTypeID>
 <!--Optional:-->
 <SenderType>?</SenderType>
 <!--Optional:-->
 <From>?</From>
 <Subject>?</Subject>
 <Body>?</Body>
 <!--You have a CHOICE of the next 2 items at this level-->

Generic Interface

185

 <!--Optional:-->
 <ContentType>?</ContentType>
 <Charset>?</Charset>
 <MimeType>?</MimeType>
 <!--Optional:-->
 <HistoryType>?</HistoryType>
 <!--Optional:-->
 <HistoryComment>?</HistoryComment>
 <!--Optional:-->
 <AutoResponseType>?</AutoResponseType>
 <!--Optional:-->
 <TimeUnit>?</TimeUnit>
 <!--Optional:-->
 <NoAgentNotify>?</NoAgentNotify>
 <!--Zero or more repetitions:-->
 <ForceNotificationToUserID>?</ForceNotificationToUserID>
 <!--Zero or more repetitions:-->
 <ExcludeNotificationToUserID>?</
ExcludeNotificationToUserID>
 <!--Zero or more repetitions:-->
 <ExcludeMuteNotificationToUserID>?</
ExcludeMuteNotificationToUserID>
 </Article>
 <!--Zero or more repetitions:-->
 <DynamicField>
 <Name>?</Name>
 <!--1 or more repetitions:-->
 <Value>?</Value>
 </DynamicField>
 <!--Zero or more repetitions:-->
 <Attachment>
 <Content>cid:61886944659</Content>
 <ContentType>?</ContentType>
 <Filename>?</Filename>
 </Attachment>
 </TicketCreate>

TicketUpdate

TicketUpdate operation add the capability to modify attributes from a ticket or add a new article,
including attachments and all defined dynamic fields for the ticket and the new article.

Note
It is not necessary to create a new article to modify a ticket attribute.

Possible Attributes:

 <TicketUpdate>
 <!--You have a MANDATORY CHOICE of the next 3 items at this
 level-->

Generic Interface

186

 <!--Optional:-->
 <UserLogin>?</UserLogin>
 <!--Optional:-->
 <CustomerUserLogin>?</CustomerUserLogin>
 <!--Optional:-->
 <SessionID>?</SessionID>
 <!--Optional:-->
 <Password>?</Password>
 <!--You have a CHOICE of the next 2 items at this level-->
 <TicketID>?</TicketID>
 <TicketNumber>?</TicketNumber>
 <!--Optional:-->
 <Ticket>
 <!--Optional:-->
 <Title>?</Title>
 <!--You have a CHOICE of the next 2 items at this level-->
 <!--Optional:-->
 <QueueID>?</QueueID>
 <!--Optional:-->
 <Queue>?</Queue>
 <!--You have a CHOICE of the next 2 items at this level-->
 <!--Optional:-->
 <TypeID>?</TypeID>
 <!--Optional:-->
 <Type>?</Type>
 <!--You have a CHOICE of the next 2 items at this level-->
 <!--Optional:-->
 <ServiceID>?</ServiceID>
 <!--Optional:-->
 <Service>?</Service>
 <!--You have a CHOICE of the next 2 items at this level-->
 <!--Optional:-->
 <SLAID>?</SLAID>
 <!--Optional:-->
 <SLA>?</SLA>
 <!--You have a CHOICE of the next 2 items at this level-->
 <!--Optional:-->
 <StateID>?</StateID>
 <!--Optional:-->
 <State>?</State>
 <!--You have a CHOICE of the next 2 items at this level-->
 <!--Optional:-->
 <PriorityID>?</PriorityID>
 <!--Optional:-->
 <Priority>?</Priority>
 <!--You have a CHOICE of the next 2 items at this level-->
 <!--Optional:-->
 <OwnerID>?</OwnerID>
 <!--Optional:-->
 <Owner>?</Owner>
 <!--You have a CHOICE of the next 2 items at this level-->
 <!--Optional:-->
 <ResponsibleID>?</ResponsibleID>
 <!--Optional:-->

Generic Interface

187

 <Responsible>?</Responsible>
 <!--Optional:-->
 <CustomerUser>?</CustomerUser>
 <!--Optional:-->
 <PendingTime>
 <Year>?</Year>
 <Month>?</Month>
 <Day>?</Day>
 <Hour>?</Hour>
 <Minute>?</Minute>
 </PendingTime>
 </Ticket>
 <!--Optional:-->
 <Article>
 <!--You have a CHOICE of the next 2 items at this level-->
 <!--Optional:-->
 <ArticleTypeID>?</ArticleTypeID>
 <!--Optional:-->
 <ArticleType>?</ArticleType>
 <!--You have a CHOICE of the next 2 items at this level-->
 <!--Optional:-->
 <SenderTypeID>?</SenderTypeID>
 <!--Optional:-->
 <SenderType>?</SenderType>
 <!--Optional:-->
 <From>?</From>
 <Subject>?</Subject>
 <Body>?</Body>
 <!--You have a CHOICE of the next 2 items at this level-->
 <!--Optional:-->
 <ContentType>?</ContentType>
 <Charset>?</Charset>
 <MimeType>?</MimeType>
 <!--Optional:-->
 <HistoryType>?</HistoryType>
 <!--Optional:-->
 <HistoryComment>?</HistoryComment>
 <!--Optional:-->
 <AutoResponseType>?</AutoResponseType>
 <!--Optional:-->
 <TimeUnit>?</TimeUnit>
 <!--Optional:-->
 <NoAgentNotify>?</NoAgentNotify>
 <!--Zero or more repetitions:-->
 <ForceNotificationToUserID>?</ForceNotificationToUserID>
 <!--Zero or more repetitions:-->
 <ExcludeNotificationToUserID>?</
ExcludeNotificationToUserID>
 <!--Zero or more repetitions:-->
 <ExcludeMuteNotificationToUserID>?</
ExcludeMuteNotificationToUserID>
 </Article>
 <!--Zero or more repetitions:-->
 <DynamicField>

Generic Interface

188

 <Name>?</Name>
 <!--1 or more repetitions:-->
 <Value>?</Value>
 </DynamicField>
 <!--Zero or more repetitions:-->
 <Attachment>
 <Content>cid:166861569966</Content>
 <ContentType>?</ContentType>
 <Filename>?</Filename>
 </Attachment>
 </TicketUpdate>

TicketGet

This operation is used to get all the attributes of a ticket including the dynamic fields, all the
articles and all the attachments that belongs to the ticket.

Possible Attributes:

 <TicketGet>
 <!--You have a MANDATORY CHOICE of the next 3 items at this
 level-->
 <!--Optional:-->
 <UserLogin>?</UserLogin>
 <!--Optional:-->
 <CustomerUserLogin>?</CustomerUserLogin>
 <!--Optional:-->
 <SessionID>?</SessionID>
 <!--Optional:-->
 <Password>?</Password>
 <!--Optional:-->
 <TicketID>?</TicketID>
 <!--Optional:-->
 <DynamicFields>?</DynamicFields>
 <!--Optional:-->
 <Extended>?</Extended>
 <!--Optional:-->
 <AllArticles>?</AllArticles>
 <!--Optional:-->
 <DynamicFields>?</DynamicFields>
 <!--Optional:-->
 <ArticleSenderType>?</ArticleSenderType>
 <!--Optional:-->
 <ArticleOrder>?</ArticleOrder>
 <!--Optional:-->
 <ArticleLimit>?</ArticleLimit>
 <!--Optional:-->
 <Attachments>?</Attachments>
 </TicketGet>

Generic Interface

189

TicketSearch

TicketSearch operation returns a list of Ticket IDs that matches a predefined criteria.

Possible Attributes:

 <TicketSearch>
 <!--You have a MANDATORY CHOICE of the next 3 items at this
 level-->
 <!--Optional:-->
 <UserLogin>?</UserLogin>
 <!--Optional:-->
 <CustomerUserLogin>?</CustomerUserLogin>
 <!--Optional:-->
 <SessionID>?</SessionID>
 <!--Optional:-->
 <Password>?</Password>
 <!--Optional:-->
 <Limit>?</Limit>
 <!--Zero or more repetitions:-->
 <TicketNumber>?</TicketNumber>
 <!--Zero or more repetitions:-->
 <Title>?</Title>
 <!--Zero or more repetitions:-->
 <Queues>?</Queues>
 <!--Zero or more repetitions:-->
 <QueueIDs>?</QueueIDs>
 <!--Optional:-->
 <UseSubQueues>?</UseSubQueues>
 <!--Zero or more repetitions:-->
 <Types>?</Types>
 <!--Zero or more repetitions:-->
 <TypeIDs>?</TypeIDs>
 <!--Zero or more repetitions:-->
 <States>?</States>
 <!--Zero or more repetitions:-->
 <StateIDs>?</StateIDs>
 <!--Zero or more repetitions:-->
 <StateType>?</StateType>
 <!--Zero or more repetitions:-->
 <StateTpeyIDs>?</StateTpeyIDs>
 <!--Zero or more repetitions:-->
 <Priorities>?</Priorities>
 <!--Zero or more repetitions:-->
 <PriorityIDs>?</PriorityIDs>
 <!--Zero or more repetitions:-->
 <Services>?</Services>
 <!--Zero or more repetitions:-->
 <ServiceIDs>?</ServiceIDs>
 <!--Zero or more repetitions:-->
 <SLA>?</SLA>
 <!--Zero or more repetitions:-->

Generic Interface

190

 <SLAIDs>?</SLAIDs>
 <!--Zero or more repetitions:-->
 <Locks>?</Locks>
 <!--Zero or more repetitions:-->
 <LockIDs>?</LockIDs>
 <!--Zero or more repetitions:-->
 <OwnerIDs>?</OwnerIDs>
 <!--Zero or more repetitions:-->
 <ResponsibleIDs>?</ResponsibleIDs>
 <!--Zero or more repetitions:-->
 <WatchUserIDs>?</WatchUserIDs>
 <!--Zero or more repetitions:-->
 <CustomerID>?</CustomerID>
 <!--Zero or more repetitions:-->
 <CustomerUserLogin>?</CustomerUserLogin>
 <!--Zero or more repetitions:-->
 <CreatedUserIDs>?</CreatedUserIDs>
 <!--Zero or more repetitions:-->
 <CreatedTypes>?</CreatedTypes>
 <!--Zero or more repetitions:-->
 <CreatedTypeIDs>?</CreatedTypeIDs>
 <!--Zero or more repetitions:-->
 <CreatedPriorities>?</CreatedPriorities>
 <!--Zero or more repetitions:-->
 <CreatedPriorityIDs>?</CreatedPriorityIDs>
 <!--Zero or more repetitions:-->
 <CreatedStates>?</CreatedStates>
 <!--Zero or more repetitions:-->
 <CreatedStateIDs>?</CreatedStateIDs>
 <!--Zero or more repetitions:-->
 <CreatedQueues>?</CreatedQueues>
 <!--Zero or more repetitions:-->
 <CreatedStateIDs>?</CreatedStateIDs>
 <!--Zero or more repetitions:-->
 <DynamicFields>
 <!--You have a MANDATORY CHOICE of the next 6 items at
 this level-->
 <!--Optional:-->
 <Equals>?</Equals>
 <!--Optional:-->
 <Like>?</Like>
 <!--Optional:-->
 <GreaterThan>?</GreaterThan>
 <!--Optional:-->
 <GreaterThanEquals>?</GreaterThanEquals>
 <!--Optional:-->
 <LowerThan>?</LowerThan>
 <!--Optional:-->
 <LowerThanEquals>?</LowerThanEquals>
 </DynamicFields>
 <!--Optional:-->
 <Ticketflag>
 <!--Optional:-->
 <Seen>?</Seen>

Generic Interface

191

 </Ticketflag>
 <!--Optional:-->
 <From>?</From>
 <!--Optional:-->
 <To>?</To>
 <!--Optional:-->
 <Cc>?</Cc>
 <!--Optional:-->
 <Subject>?</Subject>
 <!--Optional:-->
 <Body>?</Body>
 <!--Optional:-->
 <FullTextIndex>?</FullTextIndex>
 <!--Optional:-->
 <ContentSearch>?</ContentSearch>
 <!--Optional:-->
 <ContentSearchPrefix>?</ContentSearchPrefix>
 <!--Optional:-->
 <ContentSearchSuffix>?</ContentSearchSuffix>
 <!--Optional:-->
 <ConditionInline>?</ConditionInline>
 <!--Optional:-->
 <ArticleCreateTimeOlderMinutes>?</
ArticleCreateTimeOlderMinutes>
 <!--Optional:-->
 <ArticleCreateTimeNewerMinutes>?</
ArticleCreateTimeNewerMinutes>
 <!--Optional:-->
 <ArticleCreateTimeNewerDate>?</ArticleCreateTimeNewerDate>
 <!--Optional:-->
 <ArticleCreateTimeOlderDate>?</ArticleCreateTimeOlderDate>
 <!--Optional:-->
 <TicketCreateTimeOlderMinutes>?</
TicketCreateTimeOlderMinutes>
 <!--Optional:-->
 <ATicketCreateTimeNewerMinutes>?</
ATicketCreateTimeNewerMinutes>
 <!--Optional:-->
 <TicketCreateTimeNewerDate>?</TicketCreateTimeNewerDate>
 <!--Optional:-->
 <TicketCreateTimeOlderDate>?</TicketCreateTimeOlderDate>
 <!--Optional:-->
 <TicketChangeTimeOlderMinutes>?</
TicketChangeTimeOlderMinutes>
 <!--Optional:-->
 <TicketChangeTimeNewerMinutes>?</
TicketChangeTimeNewerMinutes>
 <!--Optional:-->
 <TicketChangeTimeNewerDate>?</TicketChangeTimeNewerDate>
 <!--Optional:-->
 <TicketChangeTimeOlderDate>?</TicketChangeTimeOlderDate>
 <!--Optional:-->
 <TicketCloseTimeOlderMinutes>?</TicketCloseTimeOlderMinutes>
 <!--Optional:-->

Generic Interface

192

 <TicketCloseTimeNewerMinutes>?</TicketCloseTimeNewerMinutes>
 <!--Optional:-->
 <TicketCloseTimeNewerDate>?</TicketCloseTimeNewerDate>
 <!--Optional:-->
 <TicketCloseTimeOlderDate>?</TicketCloseTimeOlderDate>
 <!--Optional:-->
 <TicketPendingTimeOlderMinutes>?</
TicketPendingTimeOlderMinutes>
 <!--Optional:-->
 <TicketPendingTimeNewerMinutes>?</
TicketPendingTimeNewerMinutes>
 <!--Optional:-->
 <TicketPendingTimeNewerDate>?</TicketPendingTimeNewerDate>
 <!--Optional:-->
 <TicketPendingTimeOlderDate>?</TicketPendingTimeOlderDate>
 <!--Optional:-->
 <TicketEscalationTimeOlderMinutes>?</
TicketEscalationTimeOlderMinutes>
 <!--Optional:-->
 <TTicketEscalationTimeNewerMinutes>?</
TTicketEscalationTimeNewerMinutes>
 <!--Optional:-->
 <TicketEscalationTimeNewerDate>?</
TicketEscalationTimeNewerDate>
 <!--Optional:-->
 <TicketEscalationTimeOlderDate>?</
TicketEscalationTimeOlderDate>
 <!--Optional:-->
 <ArchiveFlags>?</ArchiveFlags>
 <!--Zero or more repetitions:-->
 <OrderBy>?</OrderBy>
 <!--Zero or more repetitions:-->
 <SortBy>?</SortBy>
 <!--Optional:-->
 <Permission>?</Permission>
 <!--Zero or more repetitions:-->
 <CustomerUserID>?</CustomerUserID>
 </TicketSearch>

Examples:
Web Service Configuration

The following is a basic but complete web service configuration file in YAML format to use all the
Ticket Connector operations, in order to use it in OTRS you need to copy the content, save it into
a file called GenericTicketConnector.yml, and import it into OTRS in the Web Services screen in
the Admin panel by clicking in the "Add web service" action from the overview screen and then
clicking in the "Import web service" action in the add screen.

Generic Interface

193

Debugger:
 DebugThreshold: debug
 TestMode: 0
Description: Ticket Connector Sample
FrameworkVersion: 3.1.x CVS
Provider:
 Operation:
 SessionCreate:
 Description: Creates a Session
 MappingInbound: {}
 MappingOutbound: {}
 Type: Session::SessionCreate
 TicketCreate:
 Description: Creates a Ticket
 MappingInbound: {}
 MappingOutbound: {}
 Type: Ticket::TicketCreate
 TicketUpdate:
 Description: Updates a Ticket
 MappingInbound: {}
 MappingOutbound: {}
 Type: Ticket::TicketUpdate
 TicketGet:
 Description: Retrieve Ticket data
 MappingInbound: {}
 MappingOutbound: {}
 Type: Ticket::TicketGet
 TicketSearch:
 Description: Search for Tickets
 MappingInbound: {}
 MappingOutbound: {}
 Type: Ticket::TicketSearch
 Transport:
 Config:
 MaxLength: 100000000
 NameSpace: http://www.otrs.org/TicketConnector/
 Type: HTTP::SOAP
RemoteSystem: ''
Requester:
 Transport:
 Type: ''

Perl SOAP Requester
The following code is a Perl script that can connect to OTRS via the generic interface, to perform
the operations provided by the Ticket Connector, it uses two Perl CPAN modules SOAP::Lite
and Data::Dumper, be sure that your environment is capable to use that modules before you
try to run the scipt.

Generic Interface

194

#!/usr/bin/perl -w
--
otrs.SOAPRequest.pl - sample to send a SOAP request to OTRS Generic
 Interface Ticket Connector
Copyright (C) 2001-2012 OTRS AG, http://otrs.org/
--
$Id: genericinterface-connectors.xml,v 1.6 2012/02/10 16:29:43 cr
 Exp $
--
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU AFFERO General Public License as
 published by
the Free Software Foundation; either version 3 of the License, or
any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU Affero General Public
 License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
 USA
or see http://www.gnu.org/licenses/agpl.txt.
--

use strict;
use warnings;

use ../ as lib location
use File::Basename;
use FindBin qw($RealBin);
use lib dirname($RealBin);

use SOAP::Lite;
use Data::Dumper;

Variables to be defined.

this is the URL for the web service
the format is
<HTTP_TYPE>:://<OTRS_FQDN>/nph-genericinterface.pl/Webservice/
<WEB_SERVICE_NAME>
or
<HTTP_TYPE>:://<OTRS_FQDN>/nph-genericinterface.pl/WebserviceID/
<WEB_SERVICE_ID>
my $URL = 'http://localhost/otrs/nph-genericinterface.pl/Webservice/
GenericTicketConnector';

this name space should match the specified name space in the SOAP
 transport for the web service.

Generic Interface

195

my $NameSpace = 'http://www.otrs.org/TicketConnector/';

this is operation to execute, it could be TicketCreate,
 TicketUpdate, TicketGet, TicketSearch
or SessionCreate. and they must to be defined in the web service.
my $Operation = 'TicketCreate';

this variable is used to store all the parameters to be included on
 a request in XML format, each
operation has a determined set of mandatory and non mandatory
 parameters to work correctly, please
check OTRS Admin Manual in order to get the complete list.
my $XMLData = '
<UserLogin>some user login</UserLogin>
<Password>some password</Password>
<Ticket>
 <Title>some title</Title>
 <CustomerUser>some customer user login</CustomerUser>
 <Queue>some queue</Queue>
 <State>some state</State>
 <Priority>some priority</Priority>
</Ticket>
<Article>
 <Subject>some subject</Subject>
 <Body>some body</Body>
 <ContentType>text/plain; charset=utf8</ContentType>
</Article>
';

create a SOAP::Lite data structure from the provided XML data
 structure.
my $SOAPData = SOAP::Data
 ->type('xml' => $XMLData);

my $SOAPObject = SOAP::Lite
 ->uri($NameSpace)
 ->proxy($URL)
 ->$Operation($SOAPData);

check for a fault in the soap code.
if ($SOAPObject->fault) {
 print $SOAPObject->faultcode, " ", $SOAPObject->faultstring, "\n";
}

otherwise print the results.
else {

 # get the XML response part from the SOAP message.
 my $XMLResponse = $SOAPObject->context()->transport()->proxy()-
>http_response()->content();

 # deserialize response (convert it into a perl structure).

Generic Interface

196

 my $Deserialized = eval {
 SOAP::Deserializer->deserialize($XMLResponse);
 };

 # remove all the headers and other not needed parts of the SOAP
 message.
 my $Body = $Deserialized->body();

 # just output relevant data and no the operation name key (like
 TicketCreateResponse).
 for my $ResponseKey (keys %{$Body}) {
 print Dumper($Body->{$ResponseKey});
 }
}

197

Chapter 21. OTRS Scheduler
The OTRS Scheduler is an independent system process that executes tasks in background.
These kind of processes are know as daemons in Unix / Linux systems or as services on Windows
environments. It is independent but that doesn't mean that the Scheduler does everything alone,
it is fully integrated into OTRS and can use any OTRS module as needed to complete each task.

Currently the OTRS Scheduler is only able to handle Generic Interface tasks. These kind of tasks
executes invokers that send requests to remote systems. Other handlers for different tasks will
be added in future OTRS versions.

For sanity reasons the Scheduler process needs to be restarted from time to time. This is done
automatically by the scheduler process itself once a day, but it can be adjusted as needed using
the SysConfig by editing the "Scheduler::RestartAfterSeconds" setting.

The OTRS Scheduler is a set it and forget it process, the only needed human interaction is to
check its status periodically and start or stop it as needed.

Note
If the Scheduler is stopped for any reason all pending tasks and new tasks registered
when the Scheduler is stopped will be executed as soon as the Scheduler starts again
(unless the tasks are set to be executed in the future).

Scheduler Graphical Interface
The Scheduler is not visible in the OTRS Graphical User Interface unless it stops running.

Scheduler Not Running Notification
There are two different types of notifications if the system detects that scheduler is not running.
This detection is based on the Scheduler process update frequency, if the difference between
current time and the last process update time is 2 times the process update frequency a warning
message will be displayed in the OTRS notification area. If it is over 4 times the process frequency
then an alert will be displayed instead.

The Scheduler process update time can be configured via the SysConfig in the
"Scheduler::PIDUpdateTime" setting.

If you would see a warning message it is not always necessary to take an action, but is highly
recommended to check if the scheduler process is running. If you see an alert, then is highly
probable that the scheduler is in fact not running and should be started.

By default the Scheduler not running notification is enabled, if there is a valid web service
registered in the database, and is only displayed to the users in the "admin" group.

To disable the notification (not recommended) or to change or add the notification groups, please
edit the "Frontend::NotifyModule###800-Scheduler-Check" setting in the SysConfig.

OTRS Scheduler

198

Figure: Scheduler notification.

Start Scheduler
By clicking on the Scheduler not running notification link (either warning or alert) a dialog box
will open to let you start the Scheduler process again. The Scheduler can be started normally or
forced to start, by clicking on the appropriate check box in the dialog.

Note
A forced Scheduler start is only necessary if previous Scheduler process was terminated
abnormally and the Process ID is still registered in the database.

To have full control of the Scheduler process and to check it real status please use the
command line tools described below.

Figure: Start Scheduler.

Scheduler Command Line Interface
The Scheduler command line tools let you control the Scheduler process (Start / Stop) or query
it status. There are also tools to register the process to be controlled by the operating system.

Included with OTRS there are two set of CLI tools, one for Unix / Linux OS and another for MS
Windows OS.

OTRS Scheduler

199

Unix / Linux
Scheduler Init.d Files

Init.d files are special scripts that are called by the operating system at startup and shutdown
(or restart) times.

OTRS provide init.d scripts to start / stop the OTRS Scheduler process automatically by the
operating system, this scripts are located under OTRS_HOME/scripts.

Init.d scripts needs to be copied to the correct location for your operating system, they need to
had the proper permissions and some internal variables needs to be set to work properly.

Init.d Script Internal Variables

• OTRS_HOME - the path of your OTRS installation.

• User - the apache process user name.

• Group - the apache process user's group name.

Note
Currently there are only init.d scripts for Linux platforms.

Table 21.1. List of Init Scripts And Supported Operating Systems

Init Script Supported OS
otrs-scheduler-linux Red Hat, Fedora, CentOS, SUSE, openSUSE,

Debian, Ubuntu
otrs-scheduler-gentoo-init.d, otrs-scheduler-
gentoo-conf.d

Gentoo

Example 21.1. Example To Start The OTRS Scheduler Form An Init.d Script

 shell> /etc/init.d/otrs-scheduler-linux
 start

Available Actions

• start to start the OTRS Scheduler process.

• stop to stop the OTRS Scheduler process.

• restart to restart the OTRS Scheduler process.

• status to query the OTRS Scheduler process status.

The Scheduler needs the database to be available to register its Process ID, for this reason is
necessary to:

OTRS Scheduler

200

• Execute the Scheduler init.d script to start the Scheduler process after the database process
is up and running.

• Execute the Scheduler init.d script to stop the Scheduler before the database process shuts
down.

Note
If you want the Scheduler to run at system startup, please read the documentation of the
operating system for the right location to place the init.d scripts, how to configure them
to run automatically and how to set the run order.

Scheduler Daemon File
This is the part of the Scheduler that stays running in the background checking for tasks to
execute. It also provides the main functions to control the process.

All Unix / Linux uses the file OTRS_HOME/bin/otrs.Scheduler.pl.

Example 21.2. Example To Start The OTRS Scheduler

 shell> OTRS_HOME/bin/otrs.Scheduler.pl -a
 start

Available Options

• -a action.

Possible Values

• start- to start the Scheduler process.

• stop- to stop the Scheduler process.

• status- to query Scheduler process status.

• -f to force the start or stop of the Scheduler process.

Example 21.3. Example To Force Stop The OTRS Scheduler

 shell> OTRS_HOME/bin/otrs.Scheduler.pl -a
 stop -f 1

Note
Force stop the Scheduler is used remove the process ID from the database when
scheduler is not running and the process is still registered.

Force start the Scheduler is used to start the Scheduler process if the scheduler is not
running and the process is registered.

OTRS Scheduler

201

Force start or stop are only necessary if the start of the process is needed to be done
before the process update time expires. Otherwise an expired entry in the database is
discarded by normal start.

Windows
Scheduler Service Installer

The integration of the services into the MS Windows Operating System is done via the Windows
Service Control Manager (SCM). In order to make the OTRS Scheduler process to be controlled
by the SCM is necessary to register this service

OTRS provides the script OTRS_HOME/bin/otrs.Scheduler4WinInstaller.pl to register or
unregister the OTRS Scheduler into the SCM.

Example 21.4. Example To Register The OTRS Scheduler Into the Widows
SCM

 shell> OTRS_HOME/bin/
otrs.Scheduler4WinInstaller.pl -a install

Available Options

• -a action.

Possible Values

• install- to install the Scheduler process into the Windows SCM.

• remove- to remove the Scheduler process from the Windows SCM.

After installing into the Widows SCM the OTRS Scheduler process can be used as any other
service in Windows. It can be started, stopped and restarted and can be configured to be started
manually or automatic.

Note
To learn more about Windows Services and the Windows SCM please read the Windows
documentation, and Microsoft online help.

Scheduler Service File
This is the part of the Scheduler that stays running in the background checking for tasks to
execute. It also provides the main functions to control the process.

Windows Operating System uses the file OTRS_HOME/bin/otrs.Scheduler4Win.pl.

Example 21.5. Example To Start The OTRS Scheduler

 shell> OTRS_HOME/bin/otrs.Scheduler4Win.pl
 -a start

OTRS Scheduler

202

Available Options

• -a action.

Possible Values

• start- to start the Scheduler process.

• stop- to stop the Scheduler process.

• status- to query Scheduler process status.

• -f to force the start or stop of the Scheduler process.

Example 21.6. Example To Force Stop The OTRS Scheduler

 shell> OTRS_HOME/bin/otrs.Scheduler4Win.pl
 -a stop -f 1

Note
Force stopping the Scheduler is used to remove the process ID from the database when
scheduler is not running and the process is still registered.

Force starting the Scheduler is used to start the Scheduler process if the scheduler is
not running and the process is still registered.

Force start or stop are only necessary if starting the process is needed to be done before
the process update time expires. Otherwise an expired entry in the database would be
discarded by a normal start.

203

Chapter 22. Dynamic Fields
Introduction

A dynamic field is a special kind of field in OTRS, created to extend the information stored on
a ticket or article. These fields are not fixed in the system and they can appear only in specific
screens, they can be mandatory or not, and their representation in the screens depends on the
field type defined at their creation time according to the data to be held by the field. For example,
there are fields to hold a text, a date, a selection of items, etc.

Dynamic fields are the evolution of TicketFreeText TicketFreeKey TicketFreeTime,
ArticleFreeText and ArticleFreeKey fields that where commonly used in OTRS 3.0 and before.
The limitation of these "Free Fields" was that they can be defined up to 16 (text or dropdown)
fields and 6 time fields for a ticket and 3 (text or dropdown) fields for each article only, not more.

Now with dynamic fields the limitation in the number of fields per ticket or article is removed,
you can create as many dynamic fields you like either for ticket or articles. And beyond that, the
framework behind the dynamic fields is prepared to handle custom fields for other objects rather
than just ticket and articles.

This new framework that handles the dynamic fields is build using a modular approach, where
each kind of dynamic field can be seen as a plug-in module for the framework. This means that
the variety of dynamic fields can be easily extended by public OTRS modules, OTRS Feature
Add-ons, OTRS custom developments, and other custom developments.

The following dynamic field types are included with this release:

• Text (one line of text)

• Textarea (multiple lines of text)

• Checkbox

• Dropdown (single choice, multiple values)

• Multiselect (multiple choice, multiple values)

• Date

• Date / Time

Configuration
By default, a clean installation of OTRS 3.1.x does not include any dynamic fields. If you plan to
use such fields in tickets or articles you need to create dynamic fields.

An updated installation from OTRS 3.0.x will have all the old "free fields" created as dynamic
fields for compatibility and data preservation. The following is the list of dynamic fields that are
created during the migration from OTRS 3.0.x to 3.1.x.

• TicketFreeKey[1-16] (TicketFreeKey1, TicketFreeKey2 ... TicketFreeKey16)

Dynamic Fields

204

• TicketFreeText[1-16]

• TicketFreeTime[1-6]

• ArticleFreeKey[1-16]

• ArticleFreeText[1-16]

Note
During the migration procedure from OTRS 3.0.x to OTRS 3.1.x all the old "free fields"
data and configuration are migrated to the new dynamic fields architecture. Any custom
development around the old "free fields" has to be updated to use the new dynamic field
framework.

The migration of the configuration include the field itself and the screen configurations
to hide, show or show field as mandatory for each screen.

The configuration of a dynamic field is split in two parts, to add a new dynamic field or manage
an existing one you need to navigate into the "Admin" panel in the "Dynamic Fields" link. To
show, show as mandatory or hide a dynamic field in one screen you need to change the OTRS
settings in the "SysConfig" screen.

Adding a Dynamic Field
Click in the "Admin" button located in the navigation bar, then click on the "Dynamic Field" link
inside "Ticket Settings" box located in the lower center of the screen. The dynamic fields overview
will display as follows:

Dynamic Fields

205

Figure: Dynamic fields overview screen, empty.

Notice that this screen will change as you add more dynamic fields to list all created dynamic
fields. This screen might already have some fields if the installation was updated from an older
version of OTRS.

The Actions in the side bar at the left of the screen describes two possibilities: Article and Ticket,
each one has it's own dropdown selection of dynamic fields.

Note
The installation of an OTRS package could add more objects to the Action side bar.

The general procedure to create a dynamic field is:

• Click on the desired dynamic field object dropdown in the Action side bar.

• Click on the dynamic field type that you want to add from the list.

• Fill the configuration.

• Save.

The configuration dialogs for the dynamic fields are split in two parts, the upper section is common
among all the fields and the lower part might be different from one type of dynamic field to another.

General dynamic field settings:

• Name: Mandatory, unique, only letters and numbers are allowed.

This is the internal name of the field, used for example to show or hide a field in one screen. Any
modification on field name (not recommended) will need manual a update on the "SysConfig"
settings where the field is referenciated.

• Label: Mandatory.

This is field name to be displayed in the screens, it supports translations.

Note
Label translations have to be added manually to language translations files.

• Field order: Mandatory.

Defines the relative order in which the field will be displayed in the screen, by default each
new field has the last position, a change in this setting will affect the other of the other created
dynamic fields.

• Validity: Mandatory.

An invalid dynamic field will not be displayed in any screen, no matter if is configured to
displayed.

• Field type: Mandatory, Read only.

Shows the current selected field type.

Dynamic Fields

206

• Object type: Mandatory, Read only.

Shows the scope of field.

Note
To illustrate each specific field type settings a few fields will be added in our example.
These new fields will be referenciated in later sections.

For the following examples all the dynamic fields will be created for the Ticket object if
you need to create a dynamic field for Article object, just chose the field from the Article
dropdown list.

Table 22.1. The following fields will be added into the system:

Name Label Type
Field1 My Field 1 Text
Field2 My Field 2 Textarea
Field3 My Field 3 Checkbox
Field4 My Field 4 Dropdown
Field5 My Field 5 Multiselect
Field6 My Field 5 Date
Field7 My Field 6 Date / Time

Text Dynamic Field Configuration
Text dynamic field is used to store a single line string.

Text dynamic field settings:

• Default value: Optional.

This is the value to be shown by default in the edit screens (like New Phone Ticket or Ticket
Compose).

• Show link: Optional.

If set, the field value will be converted into a clickable link for display screens (like ticket zoom
or overviews).

For example, if "Show link" is set to "http://www.otrs.com", clicking on the filled value will make
your browser to open the OTRS web page.

Note
The use of $LQData{"NameX"} in the Set link value, where NameX is the name of the
field will add the field value as part of the link reference.

Dynamic Fields

207

Figure: Dynamic field Text configuration dialog.

Textarea Dynamic Field Configuration
Textarea dynamic field is used to store a multiple line string.

Textarea dynamic field settings:

• Number of rows: Optional, integer.

Used to define the height of the field in the edit screens (like New Phone Ticket or Ticket
Compose).

• Number of cols: Optional, Integer.

This is value is used to define the width of the field in the edit screens.

• Default value: Optional.

This is the value to be shown by default in the edit screens (it can be a multiple line text).

Dynamic Fields

208

Figure: Dynamic field Textarea configuration dialog.

Checkbox Dynamic Field Configuration
Checkbox dynamic field is used to store true or false value, represented by a checked or
unchecked check box.

Checkbox dynamic field settings:

• Default value: Mandatory.

This is the value to be shown by default in the edit screens (like New Phone Ticket or
Ticket Compose), the default value for this field is closed selection that can be Checked or
Unchecked.

Dynamic Fields

209

Figure: Dynamic field Checkbox configuration dialog.

Dropdown Dynamic Field Configuration
Dropdown dynamic field is used to store a single value, from a closed list.

Dropdown dynamic field settings:

• Possible values: Mandatory.

List of values to choose. when add a new value is necessary to specify the Key (internal value)
and the Value (display value).

• Default value: Optional.

This is the value to be show by default in the edit screens (like New Phone Ticket or Ticket
Compose), the default value for this field is closed selection defined by the Possible values.

• Add empty value: Mandatory, (Yes / No).

If this option is activated an extra value is defined to show a "-" in the list of possible values,
this special value is empty internally.

• Translatable values: Mandatory, (Yes / No).

This setting is used mark the possible values of this field to be translated. Only the display
values are translated, internal values are not affected, the translation of the values needs to
be manually added to the language files.

• Show link: Optional.

Dynamic Fields

210

If set, the field value will be converted into a clickable HTP link for display screens (like Zoom
or overviews).

For example, if Show link is set to "http://www.otrs.com", clicking on the filed value will make
your browser to open the OTRS web page.

Note
The use of $LQData{"NameX"} in the Set link value, where NameX is the name of the
field will add the field value as part of the link reference.

Figure: Dynamic field Dropdown configuration dialog.

Multiselect Dynamic Field Configuration
Multiselect dynamic field is used to store a multiple values, from a closed list.

Multiselect dynamic field settings:

• Possible values: Mandatory.

List of values to choose. when add a new value is necessary to specify the Key (internal value)
and the Value (display value).

• Default value: Optional.

This is the value to be show by default in the edit screens (like New Phone Ticket or Ticket
Compose), the default value for this field is closed selection defined by the Possible values.

Dynamic Fields

211

• Add empty value: Mandatory, (Yes / No).

If this option is activated an extra value is defined to show a "-" in the list of possible values,
this special value is empty internally.

• Translatable values: Mandatory, (Yes / No).

This setting is used mark the possible values of this field to be translated. Only the display
values are translated, internal values are not affected, the translation of the values needs to
be manually added to the language files.

Figure: Dynamic field Multiselect configuration dialog.

Date Dynamic Field Configuration
Date dynamic field is used to store a date value (Day, Month and Year).

Date dynamic field settings:

• Default date difference: Optional, Integer.

Number of seconds (positive or negative) between the current date and the selected date to
be show by default in the edit screens (like New Phone Ticket or Ticket Compose).

• Define years period: Mandatory (Yes / No).

Used to set a defined number of years in past and future from current date in the year select
of this field, If set to Yes the following options are available:

Dynamic Fields

212

• Years in the past: Optional, Positive integer.

Define the number of years in past from current day to display in the year selection for this
dined in edit screens.

• Years in the future: Optional, Positive integer.

Define the number of years in future from current day to display in the year selection for
this dined in edit screens.

• Show link: Optional.

If set, the field value will be converted into a clickable HTP link for display screens (like Zoom
or overviews).

For example, if Show link is set to "http://www.otrs.com", clicking on the filed value will make
your browser to open the OTRS web page.

Note
The use of $LQData{"NameX"} in the Set link value, where NameX is the name of the
field will add the field value as part of the link reference.

Figure: Dynamic field Date configuration dialog.

Date / Time Dynamic Field Configuration
Date / Time dynamic field is used to store a date time value (Minute, Hour, Day, Month and Year).

Dynamic Fields

213

Date / Time dynamic field settings:

• Default date difference: Optional, Integer.

Number of seconds (positive or negative) between the current date and the selected date to
be show by default in the edit screens (like New Phone Ticket or Ticket Compose).

• Define years period: Mandatory (Yes / No).

Used to set a defined number of years in past and future from current date in the year select
of this field, If set to Yes the following options are available:

• Years in the past: Optional, Positive integer.

Define the number of years in past from current day to display in the year selection for this
dined in edit screens.

• Years in the future: Optional, Positive integer.

Define the number of years in future from current day to display in the year selection for
this dined in edit screens.

• Show link: Optional.

If set, the field value will be converted into a clickable HTP link for display screens (like Zoom
or overviews).

For example, if Show link is set to "http://www.otrs.com", clicking on the filed value will make
your browser to open the OTRS web page.

Note
The use of $LQData{"NameX"} in the Set link value, where NameX is the name of the
field will add the field value as part of the link reference.

Dynamic Fields

214

Figure: Dynamic field Date / Time configuration dialog.

Editing a Dynamic Field
A filled dynamic field overview screen (with the previous examples) should look like:

Dynamic Fields

215

Figure: Dynamic field overview screen filled with sample data.

To change or edit a dynamic field you must have at least one field defined, select an already
added field from the dynamic fields overview screen and update it's settings.

Note
Not all the dynamic field settings can be changed, the Field type and Object type are
fixed from the selection of the field and they can't be changed.

It is not recommended to change the field internal name, but the label can be changed
at any time. If internal name is changed all "SysConfig" settings that has a reference to
that particular field needs to be updated as well as user preferences (if defined).

Showing a Dynamic Field on a Screen
To display a dynamic field on a particular screen there are two mandatory conditions:

1. The dynamic field must be valid.

2. The dynamic field must be set to 1 or 2 in the configuration of the screen.

Follow this steps to show a dynamic field in a screen

• Be sure that the dynamic field is set to valid, you can see the validity of the field from the
dynamic field overview screen. Set to valid by editing the field if necessary.

• Open the "sysconfig" and select "Ticket" from the dropdown list in the Actions side bar located
in the left part of the screen.

Dynamic Fields

216

Note
You can also search for "DynamicField" in the search box above or the "sysconfig"
key directly if you already know it.

• Locate the setting sub-group for the screen that you are looking for and click on it. For example
"Frontend::Agent::Ticket::ViewPhoneNew".

• Search for the setting that ends with "###DynamicField". For example
"Ticket::Frontend::AgentTicketPhone###DynamicField".

• If the setting is empty or does not have the required dynamic filed name, click on the "+" button
to add a new entry. For example Key: Field1, Content: 1.

If the setting already has the dynamic field name listed be sure that is set to "1" to display the
field or to "2" to display it as mandatory.

• Save the configuration by clicking in the "Update" button and the bottom of the screen and
navigate to the screen where you want the field to be displayed.

Show Examples
The following are "sysconfig" configurations examples to show or hide dynamic fields on different
screens.

