
252

Chapter 14

Bottleneck Bandwidth

In this chapter we discuss one of the fundamental properties of a network connection, the
bottleneck bandwidththat sets the upper limit on how quickly the network can deliver the sender's
data to the receiver. Inx 14.1 we discuss the general notion of bottleneck bandwidth and why we
consider it a fundamental quantity.x 14.2 discusses “packet pair,” the technique used in previous
work, andx 14.3 discusses why for our study we gain significant benefits using “receiver-based
packet pair,” in which the measurements used in the estimation are those recorded by the receiver,
rather than the ack “echoes” that the sender later receives.

While packet pair often works well, inx 14.4 we illustrate four difficulties with the tech-
nique, three surmountable and the fourth fundamental. Motivated by these problems, we develop
a robust estimation algorithm, “packet bunch modes” (PBM). To do so, we first inx 14.5 discuss
an alternative estimation technique based on measurements of the “peak rate” (PR) achieved by the
connection, for use in calibrating the PBM technique, which we then develop in detail inx 14.6. In
x 14.7, we analyze the estimated bottleneck bandwidths for the Internet paths in our study, and in
x 14.8 we finish with a comparison of the efficacy of the various techniques.

14.1 Bottleneck bandwidth as a fundamental quantity

Each element in the end-to-end chain between a data sender and the data receiver has
somemaximum rateat which it can forward data. These maxima may arise directly from physical
properties of the element, such as the frequency bandwidth of a wire, or from more complex prop-
erties, such as the minimum amount of time required by a router to look up an address to determine
how to forward a packet. The first of these situations often dominates, and accordingly the term
bandwidthis used to denote the maximum rate, even if the maximum does not come directly from
a physical bandwidth limitation.

Because sending data involves forwarding the data along an end-to-endchainof network-
ing elements, theslowestelement in the entire chain sets thebottleneck bandwidth, i.e., the max-
imum rate at which data can be sent along the chain. The usual assumption is that the bottleneck
element is a networklink with a limited bandwidth, although this need not be the case.

Note that from our data we cannot say anything meaningful about thelocation of the
bottleneck along the network path, since our methodology gives us only end-to-end measurements
(though seex 15.4). Furthermore, there may be multiple elements along the network path, each

253

limited to the same bottleneck rate. Thus, our analysis is confined to an assessment of the bottleneck
bandwidth as an end-to-end path property, rather than as the property of a particular element in the
path.

We must make a crucial distinction betweenbottleneckbandwidth andavailable band-
width. The former gives an upper bound on how fast a connection canpossiblytransmit data, while
the less-well-defined latter term denotes how fast the connection in factcantransmit data, or in some
cases how fast itshouldtransmit data to preserve network stability, even though it could transmit
faster. Thus, the available bandwidth never exceeds the bottleneck bandwidth, and can in fact be
much smaller. Bottleneck bandwidth is often presumed to be a fairly static quantity, while available
bandwidth is often recognized as intimately reflecting current network traffic levels (congestion).
Using the above terminology, the bottleneck location(s), if we were able to pinpoint them, would
generally not change during the course of a connection, unless the network path used by the connec-
tion underwent a routing changes. But the networking element(s) limiting the available bandwidth
might readily change over the lifetime of a connection.

TCP's congestion avoidance and control algorithms reflect an attempt to confine each
connection to the available bandwidth. For this purpose, the bottleneck bandwidth is essentially
irrelevant. For connectionperformance, however, the bottleneck bandwidth is a fundamental quan-
tity, because it indicates a limit on what the connection can hope to achieve. If the sender tries to
transmit any faster, not only is it guaranteed to fail, but the additional traffic it generates in doing
so will either lead to queueing delays somewhere in the network, or packet drops, if the overloaded
element lacks sufficient buffer capacity.

We discuss available bandwidth further inx 16.5, and for the remainder of this chapter
focus on assessing bottleneck bandwidth.

The bottleneck bandwidth is further a fundamental quantity because it determines what we
term theself-interference time-constant, Qb. Qb measures the amount of time required to forward
a given packet through the bottleneck element. Thus,Qb is identical to the service time at the
bottleneck element; we use the term “self-interference time-constant” instead because of the central
role Qb plays in determining when packet transit times are necessarily correlated, as discussed
below.

If a packet carries a total ofb bytes and the bottleneck bandwidth is�B byte/sec, then:

Qb =
b

�B
(14.1)

in units of seconds. We use the term “self-interference” because if the sender transmits twob-byte
packets with an interval�Ts < Qb between them, then the second one is guaranteed to have to wait
behind the first one at the bottleneck element (hence the use of “Q” to denote “queueing”).

We use the notationQb instead of the more functional notationQ(b) because we will
assume unless otherwise stated that, for a particular trace pair,b is fixed to the maximum segment
size (MSS;x 9.2.2). We note that full-sized packets arelarger than MSS, due to overhead from
transport, network, and link-layer headers. However, while it might at first appear that this overhead
is known (except for the link-layer) and can thus be safely added intob, if the bottleneck link along a
path usesheader compression(x 13.3) then the header as transmitted might take much less data than
would appear from tallying the number of bytes in the header. Since many of the most significant
bottleneck links in our study also use header compression, we decided to perform all of our analysis

254

of the bottleneck bandwidth in terms of the maximum rate at which a connection can transmituser
data.

For our measurement analysis, accurate assessment ofQb is critical. Suppose we observe
a sender transmittingp1 andp2, bothb bytes in size, and that they are sent an interval�Ts apart. If

�Ts < Qb;

then we know thatp2 had to wait a timeQb ��Ts at the bottleneck elementB while p1 was being
forwarded acrossB. (This assumes thatp1 andp2 take the same path through the network, a point
we address in detail later in this chapter.)

Thus, if �Ts < Qb, the delays experienced byp1 and p2 are perforce correlated. If
�Ts � Qb, then ifp2 experiences greater delay thanp1, the increase is not due to self-interference
but some other source (such as additional traffic from other connections, or processing delays).

We useQb to analyze packet timings and remove self-interference effects in Chapter 16.
In this chapter, we focus on sound estimation ofQb, as we must have this in order for the subsequent
timing analysis to be likewise sound.

14.2 Packet pair

The fundamental idea behind thepacket pairestimation technique is that, if two packets
are transmitted by the sender with an interval�Ts < Qb between them, then when they arrive at
the bottleneck they will be spread out in time by the transmission delay of the first packet across
the bottleneck: after completing transmission through the bottleneck, their spacing will be exactly
Qb. Barring subsequent delay variations (due to downstream queueing or processing lulls), they will
then arrive at the receiver spaced not�Ts apart, but�Tr = Qb. The sizeb then enables computation
of �B via Eqn 14.1.1

The principle of the bottleneck spacing effect was noted in Jacobson's classic congestion
paper [Ja88], where it in turn leads to the “self-clocking” mechanism (x 9.2.5). Keshav subsequently
formally analyzed the behavior of packet pair for a network in which all of the routers obey the
“fair queueing” scheduling discipline, and developed a provably stable flow control scheme based
on packet pair measurements [Ke91].2 Both Jacobson and Keshav were interested in estimating
availablerather thanbottleneckbandwidth, and for thisvariations fromQb due to queueing are of
primary concern (x 16.5). But if, as for us, the goal is to estimate�B, then these variations instead
become noise we must deal with.

To use Jacobson's self-clocking model to estimate bottleneck bandwidth requires an as-
sumption that delay variation in the network is small compared toQb. Using Keshav's scheme
requires fair queueing. Internet paths, however, often suffer considerable delay variation (Chap-
ter 16), and Internet routers do not employ fair queueing. Thus, efforts to estimate�B using packet
pair must deal with considerable noise issues. The first step in dealing with measurement noise is

1If the two packets in the pair have different sizesb1 andb2, then which to use depends on how we interpret the
timestamps for the packets. If the timestamps reflect when the packetbeganto arrive at the packet filter's monitoring
point, thenb1 should be used, since that is how much data was transmitted between the timestamps of the two packets.
If the timestamps reflect when the packetfinishedarriving, thenb2 should be used. In practice, a packet's timestamp is
recorded some timeafter the packet has finished arriving, perx 10.2, and so ifb1 6= b2, tcpanaly usesb2.

2Keshav also coined the term “packet pair.”

255

to analyze as large a number of pairs as feasible, with an eye to the tradeoff between measurement
accuracy and undue loading of the network by the measurement traffic.3

Bolot used a stream of packets sent at fixed intervals to probe several Internet paths in
order to characterize delay and loss behavior [Bo93]. He measured round-trip delay of UDP echo
packets and, among other analyses, applied the packet pair technique to form estimates of bottleneck
bandwidths. He found good agreement with known link capacities, though a limitation of his study
is that the measurements were confined to a small number of Internet paths. One of our goals is to
address this limitation by determining how well packet pair techniques work across diverse Internet
conditions.

Recent work by Carter and Crovella also investigates the utility of using packet pair in the
Internet for estimating bottleneck bandwidth [CC96a]. Their work focusses onbprobe , a tool they
devised for estimating bottleneck bandwidth by transmitting 10 consecutive ICMP echo packets
and recording the arrival times of the corresponding replies.bprobe then repeats this process with
varying (and carefully chosen) packet sizes. Much of the effort in developingbprobe concerns
how to filter the resulting raw measurements in order to form a solid estimate.bprobe currently
filters by first widening each estimate into an interval by adding an (unspecified) error term, and then
finding the point at which the largest number of intervals overlap. The authors also undertook to
calibratebprobe by testing its performance for a number of Internet paths with known bottlenecks.
They found in general it worked well, though some paths exhibited sufficient noise to sometimes
produce erroneous estimates. Finally, they note that measurements made using larger echo packets
yielded more accurate estimates than those made using smaller packets, which bodes well for our
interest in measuringQb for b = MSS.

One limitation of both studies is that they were based on measurements made only at the
data sender (x 9.1.3). Since in both studies the packets echoed back from the remote end were the
same size as those sent to it, neither analysis was able to distinguish whether the bottleneck along
the forward and reverse paths was the same, or whether it was present in only one direction. The bot-
tleneck could differ in the two directions due the packets traversing different physical links because
of asymmetric routing (x 8), or because some media, such as satellite links, can have significant
bandwidth asymmetries depending on the direction traversed [DMT96].

For the study in [CC96a], this is not a problem, because the authors' ultimate goal was to
determine which Web server to pick for a document available from a number of different servers.
Since Web transfers are request/response, and hence bidirectional (albeit potentially asymmetric in
the volume of data sent in each direction), the bottleneck for the combined forward and reverse path
is indeed a figure of interest. For general TCP traffic, however, this is not always the case, since for a
unidirectional transfer—especially for FTP transfers, which can sometimes be quite huge [PF95]—
the data packets sent along the forward path are much larger than the acks returned along the reverse
path. Thus, even if the reverse path has a significantly lower bottleneck bandwidth, this is unlikely to
limit the connection's maximum rate. However, for estimating bottleneck bandwidth by measuring
TCP traffic a second problem arises: if the only measurements available are those at the sender, then
ack compression (x 16.3.1) can significantly alter the spacing of the small ack packets as they return
through the network, distorting the bandwidth estimate. We investigate the degree of this problem
below.

3Gathering large samples, however, can conflict with another goal, that of forming an estimatequickly, briefly
discussed at the end of the chapter.

256

Time

Se
que

nce
 #

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
200

0
400

0
600

0
800

0
100

00

Figure 14.1: Paired sequence plot showing timing of data packets at sender (black squares) and
when received (arrowheads)

14.3 Receiver-based packet pair

For our analysis, we consider what we termreceiver-based packet pair (RBPP), in which
we look at the pattern of data packet arrivals at the receiver. We also utilize knowledge of the
pattern in which the data packets were originally sent, so we assume that the receiver has full timing
information available to it. In particular, we assume that the receiver knows when the packets sent
werenot stretched out by the network, and can reject these as candidates for RBPP analysis.

RBPP is considerably more accurate than sender-based packet pair (SBPP; cf.x 14.2),
since it eliminates the additional noise and possible asymmetry of the return path, as well as noise
due to delays in generating the acks themselves (x 11.6.4). Figure 14.1 shows apaired sequence
plot for data transferred over a path known to have a 56 Kbit/sec bottleneck link. The centers of the
filled black squares indicate the times at which the sender transmitted the successive data packets,
and the arrowheads point to the times at which they arrived at the receiver. (We have adjusted the
relative clock offset per the methodology given inx 12.5). The packet pair effect is quite strong:
while the sender tends to transmit packets in groups of two back-to-back (due to slow start opening
the congestion window), this timing structure has been completely removed by the time the packets
arrive, and instead they come in at a nearly constant rate of about 6,200 byte/sec.

Figure 14.2 shows the same trace pair with the acknowledgements added. They are offset
slightly lower than the sequence number they acknowledge for legibility. The arrows start at the
point in time at which the ack was generated by the receiver, and continue until received by the
sender. We can see that some acks are generated immediately, but others (such as 4,096) are delayed.
Furthermore, there is considerable variation among the transit times of the acks, even thoughthey
are almost certainly too small to be subject to stretching at the bottleneck link along the return path.
If we follow the ack arrowheads by eye, it is clear that the strikingly smooth pattern in Figure 14.1

257

Time

Se
que

nce
 #

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
200

0
400

0
600

0
800

0
100

00

Figure 14.2: Same plot with acks included

has been blurred by the ack delays, which have nothing to do with the quantity of interest, namely
Qb on the forward path.

14.4 Difficulties with packet pair

As shown in the Bolot and Carter/Crovella studies ([Bo93, CC96a]), packet pair tech-
niques often provide good estimates of bottleneck bandwidth. We are interested both in estimating
the bottleneck bandwidth of the Internet paths in our study, and, furthermore, whether the packet-
pair technique is robust enough that an Internet transport protocol might profitably use it in order to
make decisions based onQb.

A preliminary investigation of our data revealed four potential problems with packet pair
techniques, even if receiver-based. Three of these can often be satisfactorily addressed, but the
fourth is more fundamental. We discuss each in turn.

14.4.1 Out-of-order delivery

The first problem stems from the fact that, for some Internet paths, out-of-order packet
delivery occurs quite frequently (x 13.1). Clearly, packet pairs delivered out of order completely
destroy the packet pair technique, since they result in�Tr < 0, which then leads to a negative
estimate for�B. The receiver sequence plot in Figure 14.3 illustrates the basic problem. (Compare
with the clean arrivals in Figure 14.1.)

Out-of-order delivery is symptomatic of a more general problem, namely that the two
packets in a pair may not take the same route through the network, which then violates the as-
sumption that the second queues behind the first at the bottleneck. In a sense, out-of-order delivery
is a blessing, because the receiver can usuallydetectthe event (based on sequence numbers, and

258

Time

Se
que

nce
 #

60 65 70 75

250
00

300
00

350
00

400
00

450
00

500
00

Figure 14.3: Receiver sequence plot illustrating difficulties of packet-pair bottleneck bandwidth
estimation in the presence of out-of-order arrivals

possibly IP “id” fields for retransmitted packets; cf.x 10.5). More insidious are packets pairs that
traverse different paths but still arrive in order. The interval computed from their arrivals may have
nothing to do with the bottleneck bandwidth, and yet it is difficult to recognize this case and discard
the measurement from subsequent analysis. We discuss a particularly problematic instance of this
problem inx 14.4.4 below.

14.4.2 Limitations due to clock resolution

Another problem relates to the receiver's clock resolution,Cr (x 12.3).Cr can introduce
large margins of error around estimates of�B. Suppose twob-byte packets arrive at the receiver
with a spacing of�Tr. We want to estimate�B from Eqn 14.1 using

�Tr = Qb

=
b

�B
;

and hence

�B =
b

�Tr
: (14.2)

However, we cannot measure�Tr exactly, but only estimate an interval in which it lies, using:

max(� eTr �Cr; 0) � � bTr � � eTr + Cr; (14.3)

259

where� eTr is the value reported by the receiver's clock for the spacing between the two packets.
Combining Eqn 14.2 with Eqn 14.3 gives us:

b�b =
b

� bTr
;

b

� eTr + Cr

� b�b �
b

max(� eTr � Cr; 0)
: (14.4)

In the case where� eTr � Cr, i.e., the two packets arrived with the clock advancing at most once,
we cannot provide any upper bound onb�b at all. Thus, for example, ifCr = 10 msec, a common
value on older hardware (x 12.4.2), then forb = 512 bytes, from the arrival of a single packet pair
we cannot distinguish between

�B =
512

0.010 sec
= 51; 200 byte/sec;

and
�B =1:

This means we cannot distinguish between a fairly pedestrian T1 link of under 200 Kbyte/sec, and
a blindingly fast (today!) OC-12 link of about 80 Mbyte/sec.

ForCr = 1 msec, the threshold rises to 512,000 byte/sec, still much too low for mean-
ingful estimation for high-speed networks. For today's networks,Cr = 100 �sec almost allows
us to distinguish between T3 speeds of a bit over 5 Mbyte/sec and higher speeds. Since some of
the clocks in our study had finer resolution, we view this problem as tractable with today's (better)
hardware. It is not clear, however, whether in the future processor clock resolution will grow finer
at a rate to match how network bandwidths grow faster (and thusQb decreases).

While some of today's hardware provides sufficient resolution for packet-pair analysis,
other platforms do not, so we still need to find a way to deal with low-resolution clocks. In line with
the argument in the previous paragraph, doing so also potentially benefits measurement of future
networks, since their bandwidth growth may outpace that of clock resolution.

A basic technique for coping with poor clock resolution is to use packetbunchrather than
packet pair.4 The idea behind packet bunch, in whichk � 2 back-to-back packets are used, is that
bunches should be less prone to noise, since individual packet variations are smoothed over a single
large interval rather thank � 1 small intervals. This idea has not been thoroughly tested, and one
might argue the opposite: if packets are occasionally subject to large transient delays due to bursts
of cross traffic, than the largerk is, the greater the likelihood that a bunch will be disrupted by a
significant delay, leading to underestimation of�B . We investigate this concern below. However,
another benefit of packet bunch is that the overall time interval�T k

r spanned by thek packets will
be aboutk � 1 times larger than that spanned by a single packet pair. Accordingly, by choosing
sufficiently largek we can diminish the adverse effects of poor clock resolution, except for the
problem mentioned above of encountering spurious delays and underestimating�B as a result.

4The term “packet bunch” has been in informal use for at least several years; however, we were unable to find any
appearance of it in the networking literature. Thenotionappears in [BP95a], in the discussion of the “Vegas-*” variant,
which attempts to estimate available bandwidth using a four-packet version of packet pair; and in [Ho96], which uses an
estimate derived from the timing of three consecutive acks.

260

Time

Se
que

nce
 #

0 2 4 6 8 10 12

0
200

00
400

00
600

00
800

00
100

000

Figure 14.4: Receiver sequence plot showing two distinct bottleneck bandwidths

14.4.3 Changes in bottleneck bandwidth

Another problem thatanybottleneck bandwidth estimation must deal with is the possibil-
ity that the bottleneckchangesover the course of the connection. Figure 14.4 shows a trace in which
this happened. We have shown the entire trace, but only the data packets and not the corresponding
acks. While the details are lost, the eye immediately picks out a transition between one overall slope
to another, just afterT = 6. The first slope corresponds to about 6,600 byte/sec, while the second
is about 13,300 byte/sec, and increase of about a factor of two.

For this example, we know enough about one of the endpoints (lbli) to fully describe
what occurred.lbli 's Internet connection is via an ISDN link. The link has twochannels, each
nominally capable of 64 Kbyte/sec. Whenlbli initially uses the ISDN link, the router only acti-
vates one channel (to reduce the expense). However, iflbli makes sustained use of the link, then
the router activates the second channel, doubling the bandwidth.

While for this particular example the mechanism leading to the bottleneck shift is specific
to the underlying link technology, theprinciple that the bottleneck can change with time is both
important and general. It is important to detect such an event, because it has a major impact on
the ensuing behavior of the connection. Furthermore, bottlenecks can shift for reasons other than
multi-channel links. In particular, routing changes might alter the bottleneck in a significant way.

Packet pair studies to date have focussed on identifying asingle bottleneck bandwidth
[Bo93, CC96a]. Unfortunately, in the presence of a bottleneck shift, any technique shaped to esti-
mate a single, unchanging bottleneck will fail: it will either return a bogus compromise estimate,
or, if care is taken to remove noise, select one bottleneck and reject the other. In both cases, the
salient fact that the bottleneck shifted is overlooked. We attempt to address this problem in the
development of our robust estimation algorithm (x 14.6).

261

Time

Se
que

nce
 #

8.5 9.0 9.5 10.0

550
00

600
00

650
00

700
00

750
00

800
00

Figure 14.5: Enlargement of part of the previous figure

14.4.4 Multi-channel bottleneck links

We now turn to a more fundamental problem with packet-pair techniques, namely bot-
tleneck estimation in the face of multi-channel links. Here we do not concern ourselves with the
problem of detecting that the bottleneck haschangeddue to the activation or deactivation of the
link's additional channel (x 14.4.3). We instead illustrate a situation in which packet pair yields
incorrect overestimateseven in the absence of any delay noise.

Figure 14.5 expands a portion of Figure 14.4. The slope of the large linear trend in the
plot corresponds to 13,300 byte/sec, as earlier noted. However, we see that the line is actually made
up of pairs of packets. Figure 14.6 expands the plot again, showing quite clearly the pairing pattern.
The slope between the pairs of packets corresponds to a data rate of about 160 Kbyte/sec, even
though we know that the ISDN link has a hard limit of 128 Kbit/sec = 16 Kbyte/sec, a factor of ten
smaller! Clearly, an estimate of

b�b � 160 Kbyte/sec

must be wrong, yet that is what a packet-pair calculation will yield.
The question then is: where is the spacing corresponding to 160 Kbyte/sec coming from?

A clue to the answer lies in the number itself. It is not far below the user data rates achieved over
T1 circuits, typically on the order of 170 Kbyte/sec. It is as though every other packet were immune
to queueing behind its predecessor at the known 16 Kbyte/sec bottleneck, but instead queued behind
it at a downstream T1 bottleneck.

Indeed, this is exactly what is happening. As discussed inx 14.4.3, the bottleneck ISDN
link has two channels. These operate inparallel. That is, when the link is idle and a packet arrives,
it goes out over the first channel, and when another packet arrives shortly after, it goes out over the
other channel. If a third packet then arrives, it has to wait until one of the channels becomes free.
Effectively, it is queued behind not its immediate predecessor but its predecessor's predecessor, the

262

Time

Se
que

nce
 #

8.80 8.85 8.90 8.95 9.00 9.05

590
00

600
00

610
00

620
00

Figure 14.6: Enlargement of part of the previous figure

first packet in the series, and it is queued not for a 16 Kbyte/sec link but for an 8 Kbyte/sec channel
making up just part of the link.

As queues build up at the router utilizing the multi-channel link, often both channels will
remain busy for an extended period of time. In this case, additional traffic arriving at the router, or
processing delays, can alter the “phase” between the two channels, meaning the offset between when
the first begins sending a packet and when the second does so. Thus, we do not always get an arrival
pattern clearly reflecting the downstream bottleneck as shown in Figure 14.6. We can instead get a
pairing pattern somewhere between the downstream bottleneck and the true bottleneck. Figure 14.7
shows an earlier part of the same connection where a change in phase quite clearly occurs a bit
beforeT = 8. Here the pair slope shifts from about 23 Kbyte/sec up to 160 Kbyte/sec. Note that
the overall rate at which new data arrives at the receiver has not changed at all during this transition,
only the fine-scale timing structure has changed.

We conclude that, in the presence of multi-channel links, packet-pair techniques can give
completely misleading estimates for�B. Worse, these estimates will often be much too high. The
fundamental problem is the assumption with packet pair that there is only a single path through the
network, and that therefore packets queue behind one another at the bottleneck.

We should stress that the problem is more general than the circumstances shown in this
example, in two important ways. First, while in this example the parallelism leading to the esti-
mation error came from a single link with two separate (and parallel) physical channels, the exact
same effect could come from a router that balances its outgoing load across two different links. If
these links have different propagation times, then the likely result is out-of-order arrivals, which can
be detected by the receiver and removed from the analysis (x 14.4.1). But if the links have equal
or almost equal propagation times, then the parallelism they offer can completely obscure the true
bottleneck bandwidth.

Second, it may be tempting to dismiss this problem as correctable by using packet bunch

263

Time

Se
que

nce
 #

7.0 7.5 8.0 8.5

350
00

400
00

450
00

500
00

Figure 14.7: Multi-channel phasing effect

(x 14.4.2) withk = 3 instead of packet pair. This argument is not compelling without further investi-
gation, however, because packet bunch is potentially more prone to error; and, more fundamentally,
k = 3 only works if the parallelism comes fromtwo channels. If it came fromthreechannels (or
load-balancing links), thenk = 3 will still yield misleading estimates.

We now turn to developing techniques to address these difficulties.

14.5 Peak rate estimation

In this section we discuss a simple, cheap-to-compute, and not particularly accurate tech-
nique for estimating the bottleneck bandwidth along a network path. We term this techniquepeak
rateand subsequently refer to it as PR. Our interest in PR lies in providingcalibration for the robust
technique developed in the next section, based on packet-bunch modes (“PBM”). We develop two
PR-based estimates, a “conservative” estimate,cPR

c
, very unlikely to be an overestimate, and an

“optimistic” estimate,cPR
o
, which is more likely to be accurate but is also prone to overestimation.

Armed with these estimates, we then can compare them with results given by PBM. If the robust
technique yields an estimate less thancPR

c
, or higher thancPR

o
, then the discrepancy merits investi-

gation. If they generally agree, then perhaps we can use the simpler PR techniques instead of PBM
without losing accuracy (though it would be surprising to find that PR techniques suffice, per the
discussion below).

PR is based on the observation that the peak rate the connection ever manages to transmit
along the path should give a lower bound on the bottleneck rate. PR is a necessarilystressful
technique in that it requires loading the network to capacity to assure accuracy. As such, we would
prefer not to use PR as an active measurement methodology, but it works fine for situations in which
the measurements being analyzed are due to traffic initiated for some reason other than bottleneck
measurement. Thus, PR makes sense as a candidate algorithm for adding to a transport protocol.

264

In contrast, packet pair and PBM do not necessarily require stressing the network for accuracy, so
they are attractive both as additions to transport protocols to aid in their decision-making, and as
independent network analysis tools.

At its simplest, PR consists of just dividing the amount of data transferred by the duration
of the connection. This technique, however, often grossly underestimates the true bottleneck band-
width, because transmission lulls due to slow-start, insufficient window, or retransmission timeouts
can greatly inflate the connection duration.

To reduce the error in PR requires confining the proportion of the connection on which we
calculate the peak rate to a region during which none of these lulls impeded transmission. Avoiding
slow-start and timeout delays is easy, since these regions are relatively simple to identify. Identifying
times of insufficient window, however, is more difficult, because the correct window is a function of
both the round-trip time (RTT) and the available bandwidth, and the latter is shaped in part by the
bottleneck bandwidth, which is what we are trying to estimate.

If the connection was at some point not window-limited, then by definition it achieved
a sustained rate (over at least one RTT) at or exceeding the available capacity. Since the hope
embodied in PR is that at some point the available capacity matched the bottleneck bandwidth,
we address the problem of insufficient window by forming our estimate from the maximum rate
achieved over a single RTT.

tcpanaly computes a PR-based estimate by advancing through the data packet arrivals
at the TCP receiver as follows. For each arrival, it computes the amount of data (in bytes) that
arrived between that arrival and the next data packet coming justbeyondthe edge of a temporal
window equal to the minimum RTT, RTTmin. (RTTmin is computed as the smallest interval between
a full-sized packet's departure from the sender and the arrival at the sender of an acknowledgement
for that packet.) Suppose we findB bytes arrived in a total time�Tr > RTTmin, and that the
interval spanned by the departure of the packets when transmitted by the sender is�Ts.5 Finally,
if any of the packets arrived out of order, then we exclude the group of packets from any further
analysis.

Otherwise, we compute theexpansion factor

�s;r =
�Tr +Cr

�Ts +Cs

; (14.5)

whereCs andCr are the resolutions of the sender's and receiver's clocks (x 12.3).�s;r measures the
factor by which the group of packets was spread out by the network. If less than 1, then the packets
werenot spread out by the network and hence not shaped by the bottleneck. Thus, calculations
based on their arrival times should not be used in estimating the bottleneck. In practice, however,
two effects complicate the simple rule of rejecting timings if�s;r < 1. The first is that, ifCs is con-
siderably different (orders of magnitude larger or smaller) thanCr, then�s;r can vary considerably,
even if the magnitudes of�Tr and�Ts are close. The second problem is that sometimes due to
“self-clocking” (x 9.2.5), a connection rapidly settles into a pattern of transmitting packets at very
close to the bottleneck bandwidth, in which case we might find�s;r slightly less than 1 even though
it allows for a solid estimate of�B . To address these concerns, we use a slightly different definition

5Here,B doesnot include the bytes carried by the first packet of the group, since we assume that the packet timestamps
reflect when packetsfinishedarriving, so the first packet's bytes arrived before the point in time indicated by its timestamp.
Also see the footnote inx 14.2.

265

of �s;r than that given by Eqn 14.5:

e�s;r =
�Tr +Cr

�Ts + Cr

; (14.6)

namely,Cr is used in both the numerator and the denominator, which eliminates large swings in
�s; r due to discrepancies betweenCr andCs. This is a bit of a “fudge factor,” and in retrospect
a better solution would have been to useCr + Cs; but, we find it works well in practice. The
other fudge factor is thattcpanaly allows estimates fore�s;r � 0:95, to accommodate self-clocking
effects.

After taking into account these considerations, we then form the PR-based estimate:

cPR
c
=

B

�Tr +Cr

: (14.7)

The c superscript indicates that the estimator isconservative. Since it requires�T > RTTmin, it
may be an underestimate if the connection never managed to “fill the pipe,” which we illustrate
shortly.

For the same group of packets,tcpanaly also computes an “optimistic” estimate corre-
sponding to the group minus the final packet (the one that arrived more than RTTmin after the first
packet):

cPR
o
=

B�

�T�

r + Cr

; (14.8)

whereB� is the number of bytes received after subtracting those for the last packet in the group,
and�T�

r is likewise the interval over which the group arrived, excluding the final packet. (Thus,
we always have�T�

r � RTTmin.) tcpanaly does not place any restriction on the expansion
factor for the packets used in this estimate, because sometimes the data packets were in fact com-
pressed by the network (��s;r < 1) but still give reliable estimates, because they queued at the
bottleneck link behind earlier packets transmitted by the sender.tcpanaly does require, however,
that either�T�

r > 1
2
RTTmin, or thatB is equal to the offered window (i.e., the connection was

certainly window-limited), to ensure that compression of a small number of packets does not skew
the estimate.6

We compute the final estimates as the maxima ofcPR
c

andcPR
o
. Note that the algorithms

described above work best with cooperation between the sender and the receiver, in order to detect
out-of-order arrivals, and to form a good estimate for RTTmin, which can be quite difficult to assess
from the receiver's vantage point because it cannot reliably infer the sender's congestion window.

Figure 14.8 illustrates the difference between computingcPR
c

and cPR
o

for a window-
limited connection. RTTmin is about 110 msec. 8 packets arrive, starting atT = 1:5. The optimistic
estimate is based on the 3,584 bytes arriving 22 msec after the first packet, for a rate of about
163 Kbyte/sec. The conservative estimate includes the 9th packet arriving significantly later than
the first 8 (due to the window limit). The corresponding estimate is 4,096 bytes arriving in 115 msec,
for a rate of about 36 Kbyte/sec. In this case, the optimistic estimate is much more accurate, as the
limiting bandwidth is in fact that of a T1 circuit, corresponding to about 170 Kbyte/sec of user data.
In this example, the connection is limited by theofferedwindow, which is easy to detect. Very of-
ten, however, connections are instead limited by the congestion window, due earlier retransmission

6The precise method used is a bit more complicated, since it includes the possibility of different-sized packets arriving.

266

Time

Se
que

nce
 #

1.1 1.2 1.3 1.4

600
0

800
0

100
00

120
00

3,584 bytes / 22 msec =

163,000 bytes / sec

4,096 bytes / 115 msec =

36,000 bytes/sec

Figure 14.8: Peak-rate optimistic and conservative bottleneck estimates, window-limited connection

events. This limit is more difficult for the receiver to detect. Thus,cPR
c

often forms a considerable
underestimate.

On the other hand, Figure 14.9 shows an instance in whichcPR
o

is a large overestimate.
The optimistic and conservative estimates for this trace both occurred for the group of packets
arriving at timeT = 1:5, in the middle of the figure. As can be seen from the surrounding groups,
the true bottleneck capacity is about 170 Kbyte/sec (T1). The packet group atT = 1:5, however, has
beencompressedby the network (cf.x 16.3.2), and it all arrives atEthernetspeed. Thus, PR forms
a gross overestimate forcPR

o
. Furthermore,even if��s;r were checked when forming this estimate,

the estimate would have been accepted, since the packetsleft the sender at Ethernet speed, too! In
addition,cPR

c
is again a serious underestimate because the connection is again window-limited.

Thus, while PR is fairly simple to compute, it often fails to provide reliable estimates. We
need a more robust estimation technique.

14.6 Robust bottleneck estimation

Motivated by the shortcomings of packet pair and PR estimation techniques, we developed
a significantly more robust procedure, “packet bunch modes” (PBM). The main observation behind
PBM is that dealing with the shortcomings of the other techniques involves both forming a range
of estimates based on different packet bunch sizes, and to analyze the result with the possibility in
mind of finding more than one bottleneck value.

By considering different bunch sizes, we can accommodate limited receiver clock reso-
lutions (x 14.4.2) and the possibility of multiple channels or load-balancing across multiple links
(x 14.4.4), while still avoiding the risk of underestimation due to noise diluting larger bunches, or
window limitations (x 14.5), since we also consider small bunch sizes.

267

Time

Se
que

nce
 #

1.2 1.3 1.4 1.5 1.6 1.7

350
00

400
00

450
00

500
00

550
00

Figure 14.9: Erroneous optimistic estimate due to data packet compression

By allowing for finding multiple bottleneck values, we both again accommodate multi-
channel (and multi-link) effects, and also the possibility of a bottleneckchange(x 14.4.3). Further-
more, these two effects can be distinguished from one another: multiple bottleneck values due to
multi-channel effectsoverlap, while those due to bottleneck changes fall into separate regions in
time.

In the remainder of this section we discuss a number of details of PBM. Many are heuristic
in nature and evolved out of an iterative process of refining PBM to avoid a number of obvious
estimation errors. It is unfortunate that PBM has a large heuristic component, as it makes it more
difficult to understand. On the other hand, we were unable to otherwise satisfactorily deal with the
considerable problem of noise in the packet arrival times. We hope that the basic ideas underlying
PBM—searching for multiple modes and interpreting the ways they overlap in terms of bottleneck
changes and multi-channel paths—might be revisited in the future, in an attempt to put them on a
more systematic basis.

14.6.1 Forming estimates for each “extent”

PBM works by stepping through an increasing series of packet bunch sizes, and, for each,
computing from the receiver trace all of the corresponding bottleneck estimates. We term the bunch
size as theextentand denote it byk. For each extent, we advance a window over the arrivals at the
receiver. The window is nominallyk packets in size, but is extended as needed so that it always
includesk �MSS bytes of data (so we can include less-than-full packets in our analysis). We do not,
however, do this extension fork = 1, as that can obscure multi-channel effects.7

7For higher extents (k > 1), this extension does not obscure multi-channel effects, because we detecte multi-channel
bottlenecks based on comparing estimates fork = 1 with estimates fork = m, wherem is the number of multiple
channels. Thus, the main concern is to not confuse thek = 1 estimate.

268

We also extend the window to include more packets if�Tr < Cr, that is, if all the arrivals
occurred without the receiver's clock advancing.

If any of the arrivals within the window occurred out of order, or if they were transmitted
due to a timeout retransmission, we skip analysis of the group of packets, as the arrival timings will
likely not reflect the bottleneck bandwidth.

If when the last packet in the group was sent, the sender had fewer thank packets in flight,
then some unusual event occurred during the flight (such as retransmission or receipt of an ICMP
source quench), and we likewise skip analysis of the group.

We next compute bounds on�Tr, using Eqn 14.3:

�T�

r = max(�Tr � Cr; 0)

�T+
r = �Tr + Cr:

We also compute twoexpansion factorsassociated with the group, similar to that in Eqn 14.6. The
first is more conservative:

�cs;r =
�Tr �Cr

�Ts + Cr

; (14.9)

where�Ts again is the difference in time between the departure of the last packet and that of the
first. The additional conservatism comes from using�Tr � Cr in the numerator. The second is
likely to be overall the more accurate, but subject to fluctuations due to limited clock resolution:

�os;r =
�Tr

�Ts + Cr

:

We term it “optimistic” since it yields expansion factors larger than�cs;r.
If the last packet group we inspected spanned an interval of�T 0

r, then we perform a
heuristic test. If:

�Tr + Cr

�T 0

r + Cr

> 2; (14.10)

then this group was spaced out more than twice as much as the previous group, and we skip the group
(after assigning�T 0

r �Tr), because it is likely to reflect sporadic arrivals. In some cases, this
decision will be wrong; in particular, after a compression event such as that shown in Figure 14.9,
we will often skip the immediately following packet group. However, this will be the only group we
skip after the event, so, unless a trace is riddled with compression, our estimation does not suffer.

We then test whether�os;r � 0:95 (where use of 0.95 rather than 1 is again an attempt to
accommodate the self-clocking effect, per the discussion of Eqn 14.6). If so, we “accept” the group,
meaning we treat it as providing a reliable estimate. (We will further analyze the accepted estimates,
as discussed below.) LetB denote the number of bytes in the group (excluding those in the first
packet, as also done inx 14.5). With theith such estimate (corresponding to theith acceptable
group), we associate six quantities:

1. pfi , an index identifying the first packet in the group;

2. pli, an index identifying the last packet in the group;

3. �i = B=�Tr, the bandwidth estimate;

269

4. ��i = B=�Tr+, the lower bound on the estimate due to the clock resolutionCr;

5. �+i = B=�Tr�, the upper bound on the estimate; and

6. �ci , the conservative expansion factor corresponding to that given by Eqn 14.9.

We will refer to this set of quantities collectively as i.
One unusual, additional heuristic we use is that, if�os;r < 0:2, i.e., the data packets were

grossly compressed, then wealso accept the estimate given by the corresponding group. (So we
reject the estimate if0:2 � �os;r < 0:95.) This reasoning behind this heuristic is the same as that ac-
companying the discussion of Eqn 14.8, namely, that data packets can be highly compressed but still
reflect the bottleneck bandwidth due to queueing at the bottleneck behind earlier packets transmitted
by the sender. Finally, we note that this heuristic does not generally lead to problems accepting es-
timates based on compressed data that would otherwise be rejected, because the compression needs
to be rampant for PBM to erroneously accept it as a bona fide estimate.

Finally, from a computational perspective, we would like to have an upper bound on the
maximum extentk for which we do this analysis. The nominal upper bound we use isk = 4. If,
however, the bounds on the estimates obtained fork < 4 are unsatisfactorily wide due to limited
clock resolution, or if we found a new candidate bottleneck fork = 4, then we continue increasingk
until both the bounds become satisfactory and we have not produced any new bottleneck candidates.
These issues are discussed in more detail in the next section.

14.6.2 Searching for bottleneck bandwidth modes

In this section we discuss how we reduce a set of bottleneck bandwidth estimates into
a small set of one or more values. Let	(k) be the set of bottleneck estimates formed using the
procedure outlined in the previous section, for an extent ofk packets. Letnk denote the number of
estimates, andN the total number of packets that arrived at the receiver. If:

nk < max(
N

4
; 5);

then we reject further analysis of	(k) because it consists of too few estimates. Otherwise, consider
	(k) as comprising a sound set of estimates, and turn to the problem of extracting the best estimate
from the set.

Previous bottleneck estimation work has focussed on identifying a single best estimate
[Bo93, CC96a]. As discussed at the beginning ofx 14.6, we must instead accommodate the pos-
sibility of forming multiple estimates. This then rules out the use of the most common robust
estimator, the median, since it presupposes unimodality. We instead turn to techniques for identi-
fying modes, i.e., local maxima in the density function of the distribution of the estimates. Using
modal techniques gives PBM the ability to distinguish between a number of situations (bottleneck
changes, multi-channel links) that previous techniques cannot.

Clustering the estimates

Because modes are properties of density functions, in trying to identify them we run into
the usual problem of estimating density from a finite set of samples drawn from an (essentially)

270

continuous distribution. [PFTV86] gives one procedure for doing so, based on passing a size-k

window over sorted samplesX(i) to see whereX(i+k�1) �X(i) is minimal. [X(i);X(i+k�1)] then
corresponds to the region of highest density, since it packs the most datapoints into the least change
in X. We experimented with this algorithm but found the results it produced for our estimation
unsatisfactory, because there is no obviously correct choice fork, and different values yield different
estimates.

We then devised an algorithm based on a similar principle of conceptually passing a win-
dow over the sorted data. Instead of parameterizing the algorithm with a window sizek, we use an
“error-factor,”�, for � > 1. We then proceed through the sorted data, and, for eachX(i), we search
for anl satisfyingi � l < n such that:

X(l) � �X(i) < X(l+1):

In other words, we look ahead to find two estimates that straddle the value of a factor� larger than
X(i). The first estimate, with index(l), is within a factor� of X(i), while the second,(l + 1), is
beyond it. If there is no suchl (which can only happen ifX(n) � �X(i)), then we considerX(n) as
the end of the range of the modal peak.

We termCi = l� i+ 1 thecluster size, as it gives us the number of points that lie within
a factor of� of X(i). If Ci � 3, then we consider the clustertrivial , and disregard it. Otherwise,
we take as the cluster's mode its central observation, i.e.,X

(i+
Ci

2
)
. If this is identical to that of a

previously observed cluster, wemergethe two clusters.8 We then continue advancing the window
until we have definedm cluster tuples. The final step is to prune out any clusters that overlap with
a larger cluster.

We now turn to how to select�. We decided to regard as consistent any bottleneck esti-
mates that fall within�20% of the central bottleneck estimate. We found that using smaller error
bars (less than�20%) can lead to PBM finding spurious multiple peaks, while larger ones can wash
out true, separate peaks.

Consequently, we will accept as falling within the estimate's bounds

X(i) = 0:8 �X
(i+

Ci

2
)
;

and
X(l) = 1:2 �X

(i+
Ci

2
)
:

However,� is in terms of the ratio betweenX(l), the high end of the bottleneck estimate's range,
andX(i), the low end. It is easy to show that the above two relationships can hold if� = 1:5, so
that is the value we choose. Note, though, that we do not define the estimate's bounds in terms of
�20%, but as

[min(X(i); �
�

c); : : : ;max(X(l); �
+
c)]; (14.11)

where��c is the minimum bound onX
(i+

Ci

2
)

due to clock resolution limits, and�+c is the maximum

such bound. In the absence of clock resolution limits, the bounds will often be tighter than�20%;
but in the presence of such limits, they will often be wider.

The final result is�(k), a list of disjoint, non-trivial clusters associated with	(k), sorted
by descending cluster size, and each with associated error bars given by Eqn 14.11.

8This can happen because of repeated observations yielding the same bottleneck estimates, due to clock resolution
granularities and constant packet sizes.

271

Reducing the clusters

It is possible that�(k) is empty, because	(k) did not contain any non-trivial clusters.
This can happen even ifnk is large, if the individual estimates differ sufficiently. In this case, we
consider the extent-k analysis as having failed, and proceed to the next extent, or stop ifk � 4.

Otherwise, we inspect the estimate reflected by each cluster to determine its suitability,
as follows. First, we compute�c(50)i and�c(95)i as the 50th and 95th percentiles of the conservative
expansion factors�ci associated with each of the estimates i within the cluster (per Eqn 14.9).

We next examine all of the estimates that fall within the cluster's error bars (nominally,
�20%), to determine the cluster'srange: where in the trace we first and last encountered packets
leading to estimates consistent with the cluster. When determining the cluster's range, we only
consider estimates for which�ci � min(�

c(50)
i ; 1:1), to ensure that we base the cluster's range on

sound estimates (those derived from definite expansion, if present very often; otherwise, those in
the upper 50% of the expansions). Without this filtering, a cluster's range can be artificially inflated
due to self-clocking and spurious noise, which in turn can mask a bottleneck change.

We next inspect all of the extent-k estimates derived from packets falling within i's inner
range, to determine�i, the proportion of these estimates consistent with the cluster (within the error
bars given by Eqn 14.11).�i is the cluster'slocal proportion, and reflects how well it captures the
behavior within its associated range. A value of�i near 1 indicates that, over its range, the evidence
was very consistent for the given bottleneck estimate, while a lower value indicates the evidence for
the bottleneck was diluted by the presence of numerous inconsistent measurements. If�i < 0:2, or
if k = 2 (i.e., we are looking at packet pair estimates) and�i < 0:3, we reject the estimate reflected
by the cluster as too feeble. This heuristic prunes out the vast majority of estimates that have made
it this far in the process, since most of them are due to spurious noise effects. It keeps, however,
those that appear to dominate the region over which we found them.

It at first appears that a threshold of 0.2 or 0.3 is considerably too lenient, but in fact it
works well in practice, and using a higher threshold runs the risk of failing to detect multi-channel
effects, which can split the estimates into two or three different regions. For example, in Figure 14.7
we can readily see that a number of different slopes emerge.

An estimate that has made it this far is promising. The next step is to see whether we
have already made essentially the same estimate. We do so by inspecting the previously accepted
(“solid”) estimates to see whether the new estimate overlaps. If so, we consolidate the two estimates.
The details of the consolidation are numerous and tedious.9 We will not develop them here, except
to note that this is the point where a solid estimate with a large error interval (��i � �+i) can tighten
its error interval based on the observation that we have independent evidence for the same estimate
at a different extent, and the new evidence has a smaller associated error (due to the higher extent).
This is also the point where we determine whether to increase themaximum extentassociated with
an estimate. Doing so is important when hunting for multi-channel bottleneck links, as these should
exhibit one bandwidth estimate with a maximum extent exactly equal to the number of parallel
channels.

If we do not consolidate a new estimate with any previous solid ones, then we add it to
the set of solid estimates.

9And can be gleaned from thetcpanaly source code.

272

Forming the final estimates

After executing the process outlined in the previous two subsections, we have produced
�, a set of “solid” estimates. It then remains to further analyze� to determine whether the estimates
indicate the presence of a multi-channel link or a bottleneck change. Note that in the process we may
additionally merge some of the estimates; we have not yet constructed the set of “final” estimates!

If � is empty, then we failed to produce any solid bandwidth estimates. This is rare but
occasionally happens, for one of the following reasons:

1. so many packet losses that too few groups arrived at the receiver to form a reliable estimate;

2. so many retransmission events that the connection never opened its congestion window suffi-
ciently to produce a viable stream of packet pairs;

3. such a small receiver window that the connection could never produce a viable stream of
packet pairs; or,

4. the trace of the connection was so truncated that it did not include enough packet arrivals
(x 10.3.4).

In N1, we encountered 37 failures; inN2, only 1, presumably because the bigger windows used in
N2 (x 9.3) gave more opportunity of observing a packet group spaced out by the bottleneck link.
Interestingly, no estimation failed on account of too many out-of-order packet deliveries. Even
those with 25% of the arrivals occurring out of order provided enough in-order arrivals to form a
bottleneck estimate.

Assuming� is not empty, then if it includes more than one solid estimate, we compare
the different estimates as follows. First, we define thebase estimate, ��, as the first solid estimate
we produced. No other estimate was formed using a smaller extent than��, since we generated
estimates in order of increasing extent.

If �� was formed using an extent ofk = 2, and if� includes additional estimates that were
only observed fork = 2 (i.e., for higher extents we never found a compatible estimate with which
to consolidate them), then we assess whether these estimates are “weak.” An estimate is weak if it is
low compared to��; the overall proportion of the trace in accordance with the estimate is small; and
the estimate's expansions�c(50)i and�c(95)i are low. If these all hold, then the estimate fits the profile
of a spurious bandwidth peak (due, for example, to the relatively slow pace at which duplicate acks
clock out new packets during “fast recovery”, perx 9.2.7), and we discard the estimate.

We now can (at last!) proceed to producing a set of final bandwidth estimates. We begin
with the base estimate,��. We next inspect the other surviving estimates as follows. For each
estimate, we test to see whether its range overlaps any of the final estimates. If so, then we check
whether the two estimates might reflect a two-channel bottleneck link, which requires:

1. One of the estimates must have a maximum extent ofk = 2 and the other must have a
minimum extent ofk � 3. Call theseE2 andE3. This requirement splits the estimates into
one that reflects the downstream bottleneck, which is only observed for packet pairs (k = 2,
since fork > 2 the effect cannot be observed for a two-channel bottleneck), and the other
that reflects the true link bandwidth (which can only be observed fork > 2, sincek = 2 is
obscured by the multi-channel effect).

273

2. E3 must span at least as much of the trace asE2. It may span more due to phase effects, as
illustrated in Figure 14.7.

3. UnlessE3 spans almost the entire trace, we require that:

�
c(95)
3 � min(

3

4
�
c(95)
2 ; 2):

This requirement assures thatE3 was at least occasionally observed for a considerable expan-
sion factor, or, if not, then neither wasE2. The goal here is to not be fooled by anE3 that
was only generated by self-clocking (i.e., no opportunity to observe a higher bandwidth for
an extentk > 2).

4. The bandwidth estimate corresponding toE3 must be at least a factor of 1.5 different than
that fromE2, to avoid confusing a single very broad peak with two distinct peaks.

If the two estimates meet these requirements, then we classify the trace as exhibiting a
multi-channel bottleneck link.

We originally performed the same analysis for (E3,E4), that is, for overlapping estimates,
one with extentk = 3 and one withk � 4. A three-channel bottleneck would produce estimates for
both. We did not find any traces that plausibly exhibited three-channel bottleneck links, though, and
did endure a number of false findings, so we omit three-channel analysis from PBM. If we have the
opportunity in the future to obtain traces from paths with known three-channel bottlenecks, then we
presume we could devise a refinement to the present methodology that would reliably detect their
presence.

If two estimates overlap but fail the above test for a multi-channel bottleneck, and if either
has both a higher bandwidth estimate and accords with twice as many measurements as the other,
then we discard the weaker estimate and use the stronger in its place.

If they overlap but neither dominates, then if one has a minimum extent larger than the
other's maximum extent, and larger thank = 3 (to avoid erroneously discarding multi-channel
estimates), then we discard it as almost certainly reflecting spurious measurements.

If two estimates overlap and none of the three procedures above resolve the conflict, then
PBM reports that it has found conflicting estimates. This never happened when analyzingN1. For
N2, we found only 10 instances. 7 involvelbli , which frequently exhibits both a bottleneck change
and a multi-channel bottleneck, per Figures 14.4 and 14.5. The other three all exhibit a great deal
of delay variation, leading to the conflicting estimates.

If the newly considered estimate does not overlap, then, after some final sanity checks to
screen out spurious measurements (which can otherwise remain undetected, if they happen to occur
at the very beginning or end of the trace, and thus do not overlap with the main estimate), we add
it to the collection of final estimates. At this point, we conclude that the trace exhibits a bottleneck
change.

Completing the above steps results in one or more final estimates. For each final estimate
�B , we then associate bounds:

��B < �B < �+B ; (14.12)

where��B and�+B reflect Eqn 14.11, i.e., the smallest and largest estimates within�20% of �B , or
the bounds on�B itself due to limited clock resolution (x 14.4.2), if larger. In the latter case, we
term the estimate asclock-limited.

274

N1 N2

Results of estimation # % # %

Single bottleneck 2,018 90% 14,483 94%
Estimate failure 37 1.7% 1 —
Broken estimate 46 2.1% 72 0.05%
Ambiguous estimate: 139 6.2% 779 5.1%

change 94 4.2% 594 3.9%
multi-channel 74 3.3% 506 3.3%

conflicting 0 0.0% 11 0.07%
Total trace pairs 2,240 100% 15,335 100%

Table XVIII: Types of results of bottleneck estimation forN1 andN2

N1 N2

Results of estimation # % # %

Single bottleneck 1,929 95% 14,134 98%
Estimate failure 37 1.8% 1 —
Broken estimate 19 0.9% 61 0.04%
Ambiguous estimate: 48 2.3% 204 1.4%

change 7 0.34% 67 0.47%
multi-channel 41 2.0% 135 0.9%

conflicting 0 0.0% 3 0.02%
Total trace pairs 2,033 100% 14,400 100%

Table XIX: Types of results after eliminating trace pairs withlbli

14.7 Analysis of bottleneck bandwidths in the Internet

We applied the bottleneck estimation algorithms developed inx 14.5 andx 14.6 to the
trace pairs inN1 andN2 for which the clock analysis described in Chapter 12 did not uncover
any uncorrectable problems. These comprised a total of 2,240 and 15,335 trace pairs, respectively.
Table XVIII summarizes the types of results we obtained. “Single bottleneck” refers to traces
for which we found solid evidence for a single, well-defined bottleneck bandwidth. An “estimate
failure” occurs when PBM is unable to find any persuasive estimate peaks (x 14.6.2). “Broken
estimate” summarizes traces for which PBM yielded a single uncontested estimate, but subsequent
queueing analysis found counter-evidence indicating the estimate was inaccurate. (We describe this
self-consistency test inx 16.2.6.) “Ambiguous estimate” means that the trace pair did not exhibit
a single, well-defined bottleneck: it included either evidence of a bottleneck change, or a multi-
channel bottleneck link, or both; or it had conflicting estimates, already discussed inx 14.6.2.

The ambiguous estimates were clearly dominated bylbli , no doubt because its ISDN
link routinely exhibited both bottleneck changes and multi-channel effects (since when it activates
the second ISDN channel, the bandwidth doubles and a parallel path arises). Table XIX summarizes

275

the types of results after removing all trace pairs withlbli as sender or receiver. We see that PBM
almost always finds a single bottleneck. The results also exhibit a general trend betweenN1 and
N2 towards fewer problematic estimates. We suspect the difference is due to two effects: the lower
prevalence of out-of-order delivery inN2 compared toN1, and the use of bigger windows inN2

(x 9.3), which provides more opportunity for generating tightly-spaced packet pairs and packet
bunches.

In the remainder of this section, we analyze each of the different types of estimated bot-
tlenecks.

14.7.1 Single bottlenecks

Far and away the most common result of applying PBM to our traces was that we obtained
a single estimated bottleneck bandwidth. Unlike [CC96a], we do nota priori know the bottleneck
bandwidths for many of the paths in our study. We thus must fall back on self-consistency checks
in order to gauge the accuracy of PBM. Figures 14.10 and 14.11 show histograms of the estimates
formed forN1 andN2, where the histogram binning is done using the logarithms of the estimates,
so the ratio of the sizes of adjacent bins remains constant through the plot.

There are a number of readily apparent peaks. InN1, we find the strongest at about
170 Kbyte/sec, and another strong one at 6.5 Kbyte/sec. Secondary peaks occur at about 100,
330, 80, and 50 Kbyte/sec, with lesser peaks at 30 Kbyte/sec, 500 Kbyte/sec, and at a bit over
1 Mbyte/sec. The pattern inN2 is a bit different. The 170 Kbyte/sec peak clearly dominates,
and the 6.5 Kbyte/sec peak has shifted over to about 7.5 Kbyte/sec. The peaks between 50 and
100 Kbyte/sec are no longer much apparent, and the 330 Kbyte/sec peak has diminished while the
30, 500 and 1 Mbyte/sec peaks have grown. Finally, a new, somewhat broad peak has emerged at
13–14 Kbyte/sec.

We calibrate these peaks using a combination of external knowledge about popular link
speeds, and by inspecting which sites tend to predominate for a given peak. Several common
slower link speeds are 56, 64, 128, and 256 Kbit/sec. Common faster links are 1.544 Mbit/sec
(“T1”—primarily used in North America), 2.048 Mbit/sec (“E1”—used outside North America),
and 10 Mbit/sec (Ethernet). Certainly faster links are in use in the Internet, but we omit discussion
of them since none of the bottlenecks in our study exceeded 10 Mbit/sec; we note, however, that it
is the use of faster wide-area links that enables a local-area limit such as Ethernet to wind up as a
connection's bottleneck.

The link speeds discussed above reflect theraw capacity of the links. Not all of this
capacity is available to carry user data. Often a portion of the capacity is permanently set aside
for framing and signaling. Furthermore, transmitting a packet of user data using TCP requires
encapsulating the data in link-layer, IP, and TCP headers. The size of the link-layer header varies
with the link technology. The IP and TCP headers nominally require at least 40 bytes, more if IP or
TCP options are used. Use of IP options for TCP connections is rare, and none of the connections in
our study did so. TCP options are common, especially in the initial SYN packets. Thus, we might
take 40 bytes as a solid lower bound on the TCP/IP header overhead. An exception, however, is links
utilizing header compression(x 13.3), which, depending on the homogeneity of the traffic traversing
the link, can greatly reduce the bytes required to transmit the headers. Header compression works by
leveraging off of the large degree of redundancy between the headers of a connection's successive
packets. For example, under optimal conditions, CSLIP compression can reduce the 40 bytes to

276

KBytes/sec

5 10 50 100 500

0
10

0
20

0
30

0
40

0

56 Kbps

64 Kbps

128 Kbps
256 Kbps

2T1

3T1 ETHER

.5 T1

.5 E1

10 msec
 clock

T1

E1

Figure 14.10: Histogram of different single-bottleneck estimates forN1

277

KBytes/sec

5 10 50 100 500

0
10

00
20

00
30

00
40

00
50

00
60

00

64 Kbps

128 Kbps

256 Kbps
2T1

3T1
ETHER

.5 E1

T1

E1

Figure 14.11: Histogram of different single-bottleneck estimates forN2

278

Raw rate (�R) User data rate (�U) Notes

56 Kbit/sec � 6.2 Kbyte/sec
64 Kbit/sec � 7.1 Kbyte/sec
128 Kbit/sec � 14.2 Kbyte/sec
256 Kbit/sec � 28.4 Kbyte/sec
1.544 Mbit/sec � 171 Kbyte/sec T1
2.048 Mbit/sec � 227 Kbyte/sec E1
10 Mbit/sec � 1.1 Mbyte/sec Ethernet

Table XX: Raw and user-data rates of different common links

5 bytes. Finally, some links usedata compressiontechniques to reduce the number of bytes required
to transmit the user data. We presume these techniques did not affect the connections in our study
because NPD sends a pseudo-random sequence of bytes (to avoid just this effect).

Given these sundry considerations, we do not hope to nail down a single figure for each
link technology reflecting the user data rate it delivers. Instead, we make “ballpark” estimates, as
follows. For high-speed links, the framing and signaling overhead consumes about 4.5% of the raw
bandwidth [Ta96]. We compromise on the issues of header compression versus additional bytes
required for link-layer headers and TCP options by assuming 40 bytes of overhead for each TCP/IP
packet. Finally, we assume that a “typical” data packet carries 512 bytes of user data. This is
the most commonly observed value in our traces, though certainly not the only one. Given these
assumptions, the user data rate available from a link with a raw rate of�R is:

�U � (:955)(
512

512 + 40
)�R

� :886�R:

Table XX summarizes the corresponding estimated user-data rates for the common raw link rates
discussed above. From the table, it is clear that the strong 170 Kbyte/sec peak in Figure 14.10 and
Figure 14.11 reflect T1 bottlenecks. Likewise, the 6.5 Kbyte/sec peak reflects 56 Kbit/sec links, and
may be slightly higher than the estimate in the Table due to the likely use of header compression. Its
shift to 7.5 Kbyte/sec reflects upgrading of 56 Kbit/sec links to 64 Kbit/sec. The 13–14 Kbyte/sec
peak reflects 128 Kbit/sec links and the 30 Kbyte/sec peak, 256 Kbit/sec. The 1 Mbyte/sec peaks
are clearly due to Ethernet bottlenecks.

These identifications still leave us with some unexplained peaks from the bottleneck es-
timates. We speculate that the 330 Kbyte/sec peak reflects use of two T1 circuits in parallel,
500 Kbyte/sec reflects three T1 circuits (not half an Ethernet, since there is no easy way to sub-
divide an Ethernet's bandwidth), and 80 Kbyte/sec comes from use of half of a T1.

We then have only two unexplained peaks remaining: 50 and 100 Kbyte/sec. The
50 Kbyte/sec peak is only prominent inN1. We find that this peak in fact reflects vagueness due
to limited clock resolution: inx 14.4.2 we showed that, for packet pair, the fastest bandwidth a
10 msec clock can yield for 512 byte packets is 51.2 Kbyte/sec. Thus, the 50 Kbyte/sec peak is
a measurement artifact, though it also indicates the presence of connections for which PBM was
unable to tighten its bottleneck estimate using higher extents (which would reduce uncertainties due

279

to clock resolution), presumably because the connection rarely had more than two packets delivered
to the receiver at the bottleneck rate, due to extensive queueing noise.

The 100 Kbyte/sec peak, on the other hand, most likely is due to splitting a single E1
circuit in half. Indeed, we find non-North American sites predominating these connections, as
well exhibiting peaks at 200–220 Kbyte/sec, above the T1 rate and just a bit below E1. This peak
is, however, absent from North American connections. (See also Figure 14.12 and accompanying
discussion, below.)

In summary, we believe we can offer plausible explanations for all of the peaks. Passing
this self-consistency test in turn argues that PBM is indeed detecting true bottleneck bandwidths. We
next turn to variation in bottleneck rates. We would expect to observe strong site-specific variations
in bottleneck rates, since some of the limits arise directly from the speed of the link connecting the
site to the rest of the Internet.

Figure 14.12 clearly shows this effect. The figure shows a “box plot” forlog10 of the bot-
tleneck estimates for each of theN2 receiving sites. In these plots, we draw a box spanning the inner
two quartiles (that is, from 25% to 75%). A dot shows the median and the “whiskers” extend out
to 1.5 times the inter-quartile range. The plot shows any values beyond the whiskers as individual
points. The horizontal line marks 171 Kbyte/sec, the popular T1 user data rate (Table XX).

The plot clearly shows considerable site-to-site variation. While all sites reflect some
64 and 128 Kbit/sec bottlenecks, we quickly see thataustr2 has virtually only 128 Kbit/sec bot-
tlenecks, indicating it almost certainly uses a link with that rate for its Internet connection. (austr ,
on the other hand, has at least E1 connectivity.)lbli generally does not have a single bottleneck
above 64 Kbit/sec (it often has a bottleneckchangethat includes 128 Kbit/sec, but in this section
we only consider traces exhibiting a single, unchanged bottleneck). Thelbli estimates tend to be
quite sharply defined. Of those larger than 7 Kbyte/sec, 96% lay within a 30 byte/sec range centered
about 7,791 byte/sec. The other site with a narrow bottleneck bandwidth region isoce , which has
a 64 Kbit/sec link to the Internet, as clearly evidenced by the plot, except for a cluster of outliers
at 17 Kbyte/sec. All of the outliers were localized to a 1 day period, perhaps a time whenoce

momentarily enjoyed faster connectivity.
In the main, the plot exhibits a large number of sites with median bottlenecks at T1 rate.

A few have slightly higher median bottlenecks, and these tend to be non-North American sites,
consistent with E1 links. Two sites have occasional values just belowlog10 = 1:5, corresponding
to 256 Kbit/sec links. These sites areucl andukc , both located in Britain, so we suspect these
bottlenecks reflect a British circuit or set of circuits. Some sites also exhibit a fair number of
bottlenecks exceeding 1 Mbyte/sec:bnl , lbl , mid , near , panix , andwustl (as well as, more
rarely, a number of others), indicating these all enjoyed Ethernet-limited Internet connectivity.

We next investigate the stability of bottleneck bandwidth over time. We confine this in-
vestigation toN2, since it includes many more connections between the same sender/receiver pairs,
spaced over a large range of time. We begin by constructing for each sender/receiver pair two
sequences,�Ts;r andRs;r, giving the difference in time between the beginning of successive con-
nections from the sender to the receiver, and the ratio of the estimated bottleneck rate for the second
of the connections to that of the first.

As noted inx 9.3, we varied the mean time between successive connections between
sender/receiver pairs, and, in addition, our methodology would sometimes include “revisiting” a
pair at a later date. Accordingly,�Ts;r exhibits considerable range: its median is 8 minutes, its 90th

280

1.
0

1.
5

2.
0

2.
5

3.
0

a
d
v

a
u
s
t
r

a
u
s
t
r
2

b
n
l
b
s
d
i

c
o
n
n
i
x

h
a
r
v

i
n
r
i
a

l
b
l

l
b
l
i

m
i
d

n
e
a
r

n
r
a
o

o
c
e

p
a
n
i
x

p
u
b
n
i
x

r
a
i
n

s
a
n
d
i
a

s
d
s
c

s
i
n
t
e
f
1

s
i
n
t
e
f
2

s
r
i
u
c
l
u
c
l
a

u
c
o
l

u
k
c

u
m
a
n
n

u
m
o
n
t

u
n
i
j

u
s
t
u
t
t

w
u
s
t
l

Lo
g1

0
Kb

yte
s/S

ec

Figure 14.12: Box plots of bottlenecks for differentN2 receiving sites

281

Time Until Shift (sec)

10^2 10^3 10^4 10^5 10^6

0.0
0.2

0.4
0.6

0.8
1.0

Figure 14.13: Time until a 20% shift in bottleneck bandwidth, if ever observed

percentile is 104 minutes, but its mean is about 7 hours, due to revisiting.
The bottleneck ratioRs;r overall shows little variation. Its median is exactly 1.0. Evalu-

atingRs;r 's distribution directly can be misleading, because it will tend to be< 1 as often as> 1,
depending on whether the second of a pair of estimates was lower or higher than the first. What is
more relevant is the “magnitude” of the ratio between successive estimates, which we define as:

jRjs;r � exp[j logRs;rj];

that is, the ratio of the larger of the two estimates to the smaller. The median ofjRjs;r is 1.0175,
indicating that 50% of the successive estimates differ by less than 1.75% from the previous estimate.
We find that 80% of the successive estimates differ by less than 10%, and 98% differ by less than a
factor of two.

We consider two different assessments of the stability of the bottleneck rate over time.
First, we examine the correlation betweenjRjs;r and�Ts;r. If bottlenecks fluctuate significantly
over time, then we would expect the magnitude of the ratio to correlate with the time separating
the connections. If fluctuations are mainly due to measurement imprecision, then the two should be
uncorrelated.

For�Ts;r < 1 hour (85% of the successive measurements), we find very slight positive
correlation betweenjRjs;r and�Ts;r, with a coefficient of correlation equal to 0.03. We obtain
a coefficient of about this size regardless of whether we first apply logarithmic transformations to
either or both ofjRjs;r and�Ts;r in an attempt to curb the influence of outliers. For�Ts;r � 1 hour,
the coefficient of correlation rises to about 0.09. This is still not strong positive correlation, and
indicates that bottleneck bandwidth is quite stable over periods of time ranging from minutes to
days (the mean of�Ts;r, conditioned on it exceeding 1 hour, is 52 hours).

We can also assess stability in terms of the time required to observe a significant change.
To do so, for each sender/receiver pair we take the first bottleneck estimate as a “base measurement”

282

and then look to see when we find two consecutive later estimates that both differ from the base
measurement by more than 20%, and that both agree in terms of the direction of the change (20%
larger or smaller). We look for consecutive estimates to weed out spurious changes due to isolated
measurement errors. We find that only about a fifth of the sender/receiver pairseverexhibited a shift
of this magnitude. Furthermore, the amount of time between the first measurement and the first of
the pair constituting the shift has a striking distribution, shown in Figure 14.13. The distribution
appears almost uniform, except that thex-axis is logarithmically scaled, indicating that shifts in
bottleneck bandwidth occur over a wide range of time scales. This finding qualitatively matches that
in Chapter 7 that the time over which different routes persist varies over a wide range of scales. We
would expect general agreement since one obvious mechanism for a shift in bottleneck bandwidth
is a routing change, though some routing changes will not alter the bottleneck.

The last property of bottleneck bandwidth we study in this section is its symmetry: how
often is the bottleneck from hostA to hostB the same as that fromB toA? We know from Chapter 8
that Internet routes often exhibit major routing asymmetries, with the route fromA to B differing
from the reverse ofB to A by at least one city about 50% of the time inN2. It is quite possible
that these asymmetries will also lead to bottleneck asymmetries, an important consideration because
sender-based “echo” bottleneck measurement techniques such as those explored in [Bo93, CC96a]
will observe theminimumbottleneck of the two directions.

Figure 14.14 shows a scatter plot of themedianbottleneck rate estimated in the two direc-
tions for the hosts in our study. The plot uses logarithmic scaling on both axes to accommodate the
wide range of bottleneck rates. For each pair of hostsA andB for which we had successful mea-
surements in both directions, we plot a point corresponding toA's median estimate on thex-axis,
andB's median estimate on they-axis. The solid diagonal line has slope one and offset zero. Points
falling on it have equal estimates in the two directions. The dashed diagonal lines mark the extent of
estimates 20% above or below the solid line. About 45% of the points fall within�5% of equality,
and 80% within�20% (i.e., within the dashed lines). But about 20% of the estimates differ by
considerably more. For example, some paths are T1 limited in one direction but Ethernet limited in
the other, a major difference.

Of the considerably different estimates, the median ratio between the two estimates is 40%
and the mean is 65%. In light of these variations, we see that sender-based bottleneck measurement
provides a good rough estimate, but will sometimes yield quite inaccurate results.

14.7.2 Bottleneck changes

We now turn to analyzing how frequently the bottleneck bandwidth changes during a
single TCP connection. From the results in the previous section, we expect such changes to occur
only rarely, and indeed this is the case. If we disregardlbli , which, as noted inx 14.4.3, frequently
exhibits a bottleneck change due to the activation of its second ISDN channel, then, as shown in
Table XIX, only about 1 connection in 250 (0.4%) exhibited a bottleneck change. The changes
are all large, by definition (since we merge bottleneck estimates with minor differences), with the
median ratio between the two bottlenecks in the range 3-6.

Figure 14.15 illustrates one of the smaller changes. At aboutT = 2:3, the bottleneck
decreases from an estimated 168 Kbyte/sec to an estimated 99 Kbyte/sec. The effect here is not
self-clocking, as the one-way delays of the packets show a considerable increase atT = 2:3 as well.
Contrast this behavior with that at aboutT = 2:1, where we see a momentary decrease. In this

283

Median Bottlneck Rate (KBytes/sec), A -> B

M
ed

ian
 B

ot
tln

ec
k R

at
e

(K
By

te
s/s

ec
),

B
->

 A

10 50 100 500 1000

10
50

10
0

50
0

10
00

Figure 14.14: Symmetry of median bottleneck rate

284

Time

Se
que

nce
 #

1.6 1.8 2.0 2.2 2.4 2.6

200
00

400
00

600
00

800
00

100
000

Figure 14.15: Sequence plot reflecting halving of bottleneck rate

case, the slow-down is not accompanied by an increase in transit time, and is instead a self-clocking
“echo” of the slow-down atT = 1:9.

Since 99 Kbyte/sec is not a particularly compelling link rate vis-a-vis Table XX, we might
consider that the bottleneck rate did not in fact change, but instead atT = 2:3 aconstant-ratesource
of competing traffic began arriving at the bottleneck link, diluting the bandwidth available to our
connection and hence widening the spacing between arriving data packets. This may well be the
case. We note, however, thateffectivelythis situation is the same as a change in the bottleneck rate:
if the additional traffic is indeed constant rate, and not adaptive to the presence of our traffic, then
we might as well have suffered a reduction in the basic bottleneck link rate, since that is exactly the
effect our connection will experience. So we argue that, in this case, wewant to regard the change
as due to a bottleneck shift, rather than due to congestion.

A few of the bottleneck “changes” appear spurious, however. These apparently stem from
connections with sufficient delay noise to completely wash out the true bottleneck spacing, and
which coincidentally produce a common set of packet spacings that lead to a false bottleneck peak.
Most changes, however, appear genuine. In both datasets, about 15% of the changes differ by about
a factor of two, suggesting that a link had been split or two sub-links merged following a failure or
repair at the physical layer.

14.7.3 Multi-channel bottlenecks

The final type of bottleneck we analyze are those exhibiting themulti-channeleffect dis-
cussed inx 14.4.4. As shown in Table XIX, except for connections involvinglbli , known to have a
2-channel bottleneck link, we found few multi-channel bottlenecks. However, after excludinglbli ,
we still found a tendency for a few sites to predominate among those exhibiting multi-channel bot-
tlenecks:inria , ukc , andustutt , in both datasets, andwustl in N1. The presence of this last

285

Time

Se
que

nce
 #

1.5 2.0 2.5

200
00

250
00

300
00

350
00

400
00

450
00

Figure 14.16: Excerpt from a trace exhibiting a false “multi-channel” bottleneck

site in the list is not surprising, since we know that due to route “flutter” many of its connections
used two very different paths to each remote site (x 6.6).

However, we cannot confidently claim that any of the non-lbli purported multi-channel
bottlenecks are in fact due to multi-channel links, since we find that very often the trace in question
is plagued with delay noise, and lacks the compelling pattern shown in Figure 14.6. The ratios
between the nominal bandwidths of extentk = 2 andk � 3 bunches also generally tend to be< 2,
which from our experience often instead indicates excessive measurement noise smearing out the
bottleneck signature.

Even when the measurements appear quite clean, we must exercise caution. Figure 14.16
shows a portion of anN1 trace fromukc to ucl with a pattern very similar to that in Figure 14.6.
Most of the trace looks exactly like the pattern shown. PBM analyzes this trace as exhibiting a
multi-channel bottleneck with an upper rate of 477 Kbyte/sec and a slower rate of 18 Kbyte/sec.
However, detailed analysis of the trace reveals a few packet bunches withk � 3 that arrived spaced
at 477 Kbyte/sec, evidence that either the bunches werecompressed(x 16.3.2) subsequent to the
multi-channel bottleneck, or the bottleneck is in fact not multi-channel. Further analysis reveals that
the sending TCP was limited by a sender-window (x 11.3.2), and that the ack-every-other policy
used by the receiver led to almost perfect self-clocking of flights of two packets arriving at the
true bottleneck rate, followed by a self-clocking lull, followed by another flight of two, and so
on. While PBM includes heuristics based one�s;r (Eqn 14.6) that attempt to discard traces like
these as multi-channel candidates, this one passed the heuristic due to some unfortuitous packet
bunch expansion early in the trace. Had the sending TCP not been window-limited, it would have
continued expanding the window as the self-clocking set in, leading to numerous flights ofk � 3

packets all arriving at the faster link rate, and PBM would have determined that in fact the link was
not multi-channel.

In summary, we are not able to make quantitative statements about multi-channel bottle-

286

Time

Se
que

nce
 #

0.0 0.5 1.0 1.5 2.0

0
200

00
400

00
600

00
800

00
100

000

Figure 14.17: Self-clocking TCP “fast recovery”

necks in the Internet, except that in any case they are quite rare; that at least one link technology
(ISDN) definitely exhibits them; and that some sites exhibit either true such links, or at least noise
patterns resembling the multi-channel signature.

14.7.4 Estimation errors due to TCP behavior

In the previous section, we noted how TCP “self-clocking” can lead to a packet arrival
pattern that matches that expected for a multi-channel bottleneck link quite closely, even though
the bottleneck link is not in fact multi-channel. In this section we briefly illustrate another form of
TCP behavior that can lead to false bottleneck estimates. Figure 14.17 shows a sequence plot of a
connection clearly dominated by an unusually smooth and slow middle period.

What has occurred is that a single packet was dropped at aboutT = 0:7. Enough ad-
ditional packets were in flight that 4 duplicate acks came back to the sender. The first 3 sufficed
to trigger “fast retransmit” (x 9.2.7), and the congestion window was such that the 4th led to the
transmission of an additional packet carrying new data via the “fast recovery” mechanism (x 9.2.7).
However, the first packet retransmitted via fast retransmit was also dropped, while the fast-recovery
packet carrying new data arrived successfully. This meant that the TCP receiver still had a sequence
hole reflecting the original lost packet, so it sent another dup ack. The arrival of that duplicate then
liberated another packet via fast recovery, and the cycle repeated 50 more times, until the original
lost packet was finally retransmitted again, this time due to a timeout. Its retransmission filled the
sequence hole and the connection proceeded normally from that point on.

Since the connection had an RTT of about 22 msec and only one fast recovery packet or
dup ack was in flight at any given time, during the retransmission epoch the connection transmitted

287

using “stop-and-go,” with an effective rate of:

512 bytes
0:22 sec

= 23 Kbyte/sec:

PBM finds this peak rather than the true bottleneck of 1 Mbyte/sec, because the true bottleneck is
obscured by the receiver's 1 msec clock resolution.

The TCP dynamics shown in the figure are quite striking. We note, however, that use of
the SACK selective-acknowledgement option [MMFR96], now in the TCP standardization pipeline,
will give the sender enough information to avoid situations like this one. We also note that, while
this sort of TCP behavior is not exceptionally rare, this was the only such trace that we know PBM
to have misanalyzed.

14.8 Efficacy of other estimation techniques

We finish with a look at how other, simpler bottleneck estimation techniques perform
compared to PBM. Since PBM is quite complex, it would be useful to know if we can use a simpler
method to get comparably sound results. In this context, the development of PBM serves as a way to
calibrate the other methods. We confine our analysis to those traces for which PBM found a single
bottleneck, as the other techniques all assume such a situation to begin with.

We further associate error bars with each PBM estimate. These either span the range of
“consistent” estimates we found, where estimates are considered consistent if they lie within�20%
of the main PBM estimate (x 14.6.2); or, if larger, the error bars reflect the inherent uncertainty
in the PBM estimate due to limited clock resolution (x 14.4.2). If another technique produces an
estimate lying within the error bars, then we consider it as performing as well as PBM, otherwise
not.

14.8.1 Efficacy of PR

In this section we evaluate the “conservative” and “optimistic” peak-rate (PR) estimators
developed inx 14.5. These estimators were developed primarily as calibration checks for PBM, and
we noted in their discussion that they will tend to underestimate the true bottleneck rate. Still, since
they are simple to compute, it behooves us to evaluate their efficacy. We only evaluate them forN2,
since they rely on the sending TCP enjoying a large enough window that it could “fill the pipe” and
send at a rate equal to or exceeding the bottleneck rate (x 9.3).

As we might expect, we find that the conservative estimatecPR
c

given by Eqn 14.7 often
underestimates the bottleneck: 60% of the time inN2, cPR

c
was below the lower bound given by

PBM; 39% of the time, it was in agreement; and 2% of the time it exceeded the upper bound, due
to packet compression effects (x 16.3).

Unfortunately, the more optimistic estimatecPR
o

given by Eqn 14.8 only fares slightly
better, underestimating 43% of the time, agreeing 52%, and overestimating 5% of the time.

We conclude that neither peak-rate estimator is trustworthy: they both often underesti-
mate, because connections fail to fill the pipe due to congestion levels high enough to preclude an
RTT's worth of access to the full link bandwidth.

288

14.8.2 Efficacy of RBPP

Receiver-based packet pair (x 14.3) is equivalent to PBM with the extent limited tok = 2.
(That is, it uses PBM's clustering algorithm to pick the bestk = 2 estimate.) Consequently, we
would expect it to do quite well in terms of agreeing with PBM, with disagreement potentially
arising only due to clock resolution limitations fork = 2 (x 14.4.2); delay noise on very short time
scales such that pairs of packets are perturbed and do not yield a clear bandwidth estimate peak, but
larger extents do; and multi-channel bottlenecks (not further evaluated in this section), one of the
main motivations for PBM in the first place.

We find the RBPP estimate is almost always within�20% of PBM's, disagreeing inN1

andN2 by more only 2-3% of the time. The two estimates are identical about 80% of the time,
indicating PBM was usually unable to further hone RBPP's estimate by considering larger extents.
Thus, if (1) PBM's general clustering and filtering algorithms are applied to packet pair, (2) we do
packet pair estimation at thereceiver, (3) the receiver benefits from sender timing information, so
it can reliably detect out-of-order delivery and lack of bottleneck “expansion,” and (4) we are not
concerned with multi-channel effects, then packet pair is a viable and relatively simple means to
estimate the bottleneck bandwidth.

14.8.3 Efficacy of SBPP

We finish with an evaluation of one form ofsender-based packet pair (SBPP). SBPP is of
considerable interest because a sender can use it without any cooperation from the receiver. This
property makes SBPP greatly appealing for use by TCP in the Internet, because it works with only
partial deployment. That is, SBPP can enhance a TCP implementation's decision-making for every
transfer it makes, even if the receiver is an old, unmodified TCP. We expect SBPP to have difficulties,
though, due to noise induced by networking delays experienced by the acks, as well as variations in
the TCP receiver'sresponse delaysin generating the acks themselves (x 11.6.4).

The bottleneck bandwidth estimators previously studied are both sender-based
[Bo93, CC96a]. They differ from how sender-based TCP packet pair would work in that those
schemes use “echo” packets. As noted in the discussion of Figure 14.14, Internet paths do not al-
ways have symmetric bottlenecks in the forward and reverse directions. Consequently, echo-based
techniques will sometimes perforce give erroneous answers for the forward path's bottleneck rate.
For TCP's use, however, the “echo” is the acknowledgement of the data packet. Except for con-
nections sending data in both directions simultaneously, which are rare, these echoes are therefore
returned in quite small ack packets. Consequently, bottleneck asymmetry will not in general perturb
SBPP for TCP. Another significant difference is that, for TCP, usually an echo is only generated for
every other data packet (x 11.6.1). Consequently, the interval between each pair of acks arriving
at the sender echoes the difference in time between the arrivals oftwo data packets at the receiver,
rather than the arrivals of consecutive data packets. Because of this loss of fine-scaled timing in-
formation, TCP SBPP cannot detect the presence of multi-channel links, since doing so requires
observing per-packet timing differences. (It will instead see timings corresponding to an extent of
k = 4, which, for 2-channel and 3-channel links, is in fact the true bottleneck rate.)

To fairly evaluate SBPP, we assume use by the sender of the following considerations for
generating “good” bandwidth estimates:

1. The sender always correctly determines how many user data bytes arrived at the receiver

289

between when it sent the two acks.

2. The sender does not consider pairs of acks if the first ack was for all the outstanding data, as
such a pair is guaranteed to have a spurious RTT delay between the first and second ack.

3. The sender never bases an estimate on an ack that is for only a single packet's worth of data
(MSS), as these often are delayed acks, and the sender lacks sufficient information to remove
the timer-induced additional delay.

4. The sender never bases an estimate on an ack that does not acknowledge new data. This
prevents the sender from using inaccurate timing information due to packet loss or reordering.

5. The sender keeps track of the sending times for its data packets, so it can determine thesender
expansion factor(x 14.5):

e�s;s =
�Ta + Cs

�Td + Cs

;

where�Ta is the elapsed time between the arrival of successive acks,�Td is the elapsed
time between the departure of the first and last data packet being acknowledged, andCs is the
sender's clock resolution.

The sender rejects an estimate ife�s;s < 0:9. We use 0.9 instead of 1.0 as a “fudge factor” to
account for self-clocking, which sometimes occurs at exactly the bottleneck rate.

The sender also computes “acceptable” estimates, which are those that do not conform to
all of the above considerations, but at least conform to the first two. (These estimates will be used
if SBPP cannot form enough “good” estimates.)

After collecting “good” and “acceptable” estimates for the entire trace, we then see
whether we managed to collect 5 or more “good” estimates. If so, we take their 95th percentile
as the bottleneck estimate (allowing for the last 5% to have been corrupted by ack compression, per
x 16.3.1). If not, then we take the median of the “acceptable” estimates as our best guess.

We find, unfortunately, that SBPP does not work especially well. In both datasets, the
SBPP bottleneck estimate lies within�20% of the PBM estimate only about 60% of the time.
About one third of the estimates are too low, reflecting inaccuracies induced by excessive delays
incurred by the acks on their return, with the median amount of underestimation being a factor of
two (and the mean, more than a factor of four). The remaining 5–6% are overestimates, reflecting
frequent ack compression (x 16.3.1), with anN1 median overestimation of 60% and a mean of
175%, though inN2 these dropped to 45% and 75%.

A final interesting phenomenon inN2 is that, about 2% of the time, SBPP was unable to
form any sound estimate. These all entailed connections to receivers that generated only one ack
for each entire slow-start “flight” (x 11.6.1). Since one of the considerations outlined above requires
that the first ack of a pair not be an ack for all outstanding data (to avoid introducing a round-trip
time lull that has nothing to do with the bottleneck spacing), if the network does not drop any data
packets, then such a receiver willonlygenerate acks for all outstanding data, so the SBPP algorithm
above fails to find any acceptable measurements.

290

14.8.4 Summary of different bottleneck estimators

In our evaluation of the different bottleneck rate estimators, we found that PBM overall
appears quite strong. It produces many bandwidth estimates that accord with known link speeds, and
produces few erroneous results, except for a tendency to misdiagnose a multiple-channel bottleneck
link in the presence of considerable delay noise.

Using PBM then as our benchmark, we found that the stressful “peak rate” (PR) tech-
niques perform poorly, frequently underestimating the bottleneck, as we surmised they probably
would when developing them inx 14.5. They did, however, serve as useful calibration tests when de-
veloping PBM, since they pointed up traces for which we needed to investigate why PBM produced
an estimate less than that of the conservative PR technique, or greater than that of the optimistic
PR technique.

We also found that receiver-based packet pair (RBPP) performs virtually identically to
PBM, provided that we observe the requirements outlined inx 14.8.2, and are not concerned with
detecting multi-channel bottleneck links. Unfortunately, one requirement for RBPP is sender co-
operation in timestamping the packets it sends, so the receiver can detect out-of-order delivery and
data packet compression. We have not investigated the degree to which these requirements can be
eased, but this would be a natural area for future work.

We unfortunately found that sender-based packet pair (SBPP) does not fare nearly as well
as RBPP. Even taking care to use only measurements the sender can deduce should be solid, SBPP
suffers from ack arrival timings perturbed by queueing delays and ack compression. As a result, it
renders accurate results less than 2/3's of the time.

Thus, receiver-based bottleneck measurement appears to hold intrinsic advantages over
sender-based measurement, and fairly simple receiver packet pair techniques, with sender coopera-
tion, gain all of the advantages of the more complex PBM, unless we are concerned with detecting
multi-channel bottleneck links.

Finally, a particularly interesting question for future work to address is howquickly these
techniques can form solid estimates. If we envision a transport connection using an estimate of the
bottleneck bandwidth to aid in its transmission decisions, then we would want to form these esti-
mates as early in the connection as possible, particularly since most TCP connections are short-lived
and hence have little opportunity to adapt to network conditions they observe [DJCME92, Pa94a].

