
383

Appendix A

The Network Probe Daemon

NPD (Network Probe Daemon) is a framework for probing paths through the Internet
by tracing the routes corresponding to the paths, and by sending TCP packets along the paths and
tracing the arrivals of both the packets and their acknowledgements. NPD consists of a daemon
(npd ) that services authenticated requests for tracing and generating probes, and a control program
(npd control ), which is run only at the site conducting the probe experiments.

The following sections discuss the daemon's operation (x A.1) and the steps taken to
address security concerns (x A.2).

A.1 Daemon operation

A site participates in the network probe experiment by running the network probe daemon
npd on a Unix workstation connected to the Internet. The workstation does not need any special
location in the network topology (e.g., it does not need to be located on the wide-area gateway
network).

Thenpd process is run by Internet services daemoninetd whenever a connection ap-
pears for the “npd” service (TCP port 7504, by default). This means that installing the daemon
requires editing/etc/servicesto add the “npd” service, and/etc/inetd.confto add the service with the
given port number.

Once running,npd responds to the following requests:

trace-route X

Run thetraceroute utility [Jac89] to measure the path to hostX and send back the results.

begin-trace X Y

Begin tracing “discard” ornpd -to-npd packets and their acknowledgements between hosts
X andY.

terminate-trace

Stop the trace and send back the results.

sink s



384

Accept a connection on the “npd” port, using a socket receive buffer ofsbytes, and read from
it until the connection is closed.

source X p n s

Sendn bytes to the discard or “npd” port (as indicated byp being “discard” or “npd”) of host
X, using a socket send buffer ofsbytes.

npd sources and sinks always use a local TCP port of 7505 (that they both do has security
benefits, as discussed inx A.2 below). If the bytes are sent to the “discard” port, then no re-
motenpd need run; theinetd process on the remote machine will instead handle discarding
the data packets itself.

restart-log

Mail the current log to a preconfigured address and, upon success, clear it.

self-test

Perform a self-test and report the results.

quit Terminate the connection.

On some operating systems, the packet filter cannot capture traffic generated by the same
host that is running the filter. In particular, Sun workstations using SunOS and the stock “NIT”
(Network Interface Tap) interface do not capture their own outbound traffic. Because SunOS is
quite popular, it was necessary to accommodate this deficiency. For thetraceroute experiment
it makes no difference, but for the packet dynamics (probe) experiment it is crucial that the TCP
traffic comprising the probe be recorded at both endpoints. NPD can thus be configured at a site to
run on two workstations, asource/sinkhost that sources or sinks TCP probes, and atracehost that
runstraceroute or tcpdump , depending on the experiment. For a given siteA, we refer here to
these machines asAs (source) andAt (trace) respectively. For many sites,As = At, as summarized
in Table XIV.

To conduct atraceroute experiment measuring the route from siteA to siteB, the NPD
master program (npd control ) connects to thenpd daemon at hostAt and (after authentication)
issues:

trace-route B

quit

and reads back thetraceroute output, if successful. To conduct aprobeexperiment ofb bytes
betweenA andB, using send and receive buffer sizes ofs and r, npd control executes the
following steps (assuming each preceding step is successful):

1. Send the requestbegin-trace A B toAt andBt, and wait for them to indicate they are
ready.

2. Send the requestsink r toBs and wait for it to indicate it is ready.

3. Send the requestsource B npd b r toAs.



385

4. Wait forAs andBs to indicate they have finished sourcing/sinking the data stream.

5. Wait two more seconds, to allow any packets still traveling inside the network to arrive at the
endpoints.

6. Send the requestterminate-trace toAt andBt.

7. Receive the trace and error files fromAt andBt.

8. Send the requestquit toAs andBs, and toAt andBt if different.

A.2 Security issues

Allowing a program to originate and trace network traffic at an Internet site naturally
raises important security issues. To this end, we took a number of steps to make NPD secure:

� A host attempting to make NPD requests must first authenticate itself, as explained below.

� npd does not need to be installed with any privilege, other than being able to exectcpdump

andtraceroute . A site can also configure it so it can only run a special, restricted version
of tcpdump (rtcpdump ; see below).

� npd is hardwired to only be able to trace TCP “discard” traffic, or traffic between twonpd 's.
This is done by constructing atcpdump filter of

(RESTRICTION) and (XXX)

whenevernpd is asked to trace traffic using the filterXXX, whereRESTRICTIONis:

(tcp port 9) or (tcp src port 7505 and tcp dst port 7505)

i.e., only allow traffic involving either the TCPdiscard port, or both annpd sender and
receiver. (TCP port 7505 is the well-known port used bynpd for sourcing and sinking traffic;
seex A.1.)

� npd logs all of its connections and activity. If writing to the log fails, or ifnpd cannot lock
the log for exclusive access,npd exits.

� The log file can only be reset ifnpd first succeeds in mailing the previous log to a preset
Internet mail address. Sites can configure this address to include a local address.

� The only files created bynpd (other than the log file) are temporary files created using the
Unix tmpfile(3) library routine, which are guaranteed to disappear whennpd exits, and
also to be unreadable by other local processes.

� When executed,npd forks a child process that sleeps for a fixed amount of time (10 minutes).
When the child process wakes up, it kills its parent process. This mechanism acts as a crude
“fail-safe.” Normally, afternpd successfully completes its requests, it kills the child process
prior to exiting itself. But if for any reasonnpd fails to do so (for example, if the network
connection betweennpd andnpd control is lost), the fail-safe guarantees thatnpd will
at some point cease consuming resources on the host.



386

A.2.1 Usingrtcpdump instead oftcpdump

The NPD sources includertcpdump , a version oftcpdump that is restricted to capturing
TCP discard packets (ornpd -to-npd packets, as described above).rtcpdump can only capture
live, restricted packets (it cannot read existing trace files), and only writes tostdout, which is under
the full control ofnpd .

Thus, a site can safely givertcpdump “setgid” or “setuid” privilege to the Unix “group
id” or “user id” necessary for packet capture on the tracing host, without needing to give the tracing
group-id or user-id tonpd itself.

rtcpdump terminates whenever itsstdin is closed, which happens automatically when
npd exits.

A.2.2 NPD authentication

An important aspect of NPD security is the use of fairly strong authentication to restrict
use ofnpd at a site to only authorized remote sites.npd authenticates a remote site in the following
manner:

1. The IP address of the remote host must translate to a hostname that in turn translates back
to the given IP address. To illicitly pass this test, an attacker must subvert a Domain Name
System (DNS) name server [MD88] (which, unfortunately, is possible [Be95]).

2. As part of the authentication procedure, the host must identify itself using a DNS hostname.
The host's claimed identity must then translate to the host's IP address. Like the previous
step, this step requires that an attacker subvert a DNS name server.

3. The host's claimed identity must appear innpd 's directory of secret keys. For an attacker to
pass this test, they must successfully subvert a DNS name server authoritative for one of sites
appearing in the directory of secret keys; more difficult than the subversions above, but still
possible.

4. npd challenges the remote host to prove its identity by sending it a random bit-string. The
remote site must successfully xor this bit-string with the secret key and send tonpd the
MD5 checksum [Ri92] of the result.npd then verifies that the result matches its own local
computation of what the checksum should be. If so, then the remote site is presumed to know
the secret key and is authenticated.

For an attacker to successfully pass this test essentially requires that they know the secret
key, since MD5 checksums take on2128 � 10

38 possible values. Since the secret key never
crosses the network,1 to acquire the secret key requires either subverting thenpd control
site or thenpd site, or computing the key by observing previous authentication exchanges
as they crossed the network. This latter attack is believed infeasible due to the presumed
non-invertibility of MD5 [Ri92].

1Except when distributing the NPD sources to a remote site; or ifnpd retrieves the key using NFS.


