
101

Part II

End-to-End Internet Packet Dynamics
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Chapter 9

Overview of the Packet Dynamics Study

In this part of our study we present our efforts to find convincing answers to questions
about end-to-end Internet packet dynamics such as “how often are packets dropped?” As in Part I,
we devise a large-scale measurement experiment based on the “Network Probe Daemon” (NPD)
measurement framework. Our goal with this part of our study is to develop persuasive characteriza-
tions of the dynamics of Internet packet loss and delay. To do so, however, requires a great deal of
groundwork in order to assure that the resulting findings are sound.

First, we need to calibrate our basic packet measurements, detecting those that are untrust-
worthy or inaccurate so that we can discard them to avoid drawing false conclusions. We describe
how we do so in Chapter 10. Because we use TCP transfers as our basic “probes” for measuring
network paths, our probes have a complicated structure due to the particulars of TCP. In Chapter 11
we discuss our development of an analysis tool,tcpanaly , that accounts for the details of the
various TCPs in our study, and thus can separate their effects from true networking effects. The
development oftcpanaly also gives us an opportunity to look at the differences in behavior be-
tween the TCP implementations in our study. These turn out to be quite significant, including some
sufficiently broken TCPs that, if ubiquitously deployed, would devastate Internet performance due
to congestion collapse.

Because one of our goals is to characterize one-way packet delays, we must also deal with
the problem of calibrating the clocks used in our study. This proves much more difficult than we
had originally anticipated. Chapter 12 details our efforts.

In Chapter 13 we turn to examining network “pathologies,” meaning unexpected network
behavior. These include out-of-order delivery, in which packets arrive at the receiver in a different
order than that in which they were sent; packet replication, in which the network delivers multiple
copies of a single packet; and packet corruption, in which the data in the packet delivered by the
network differs from that in the packet as originally sent.

In order to then soundly evaluate packet delay and loss, we need to first determine each
connection'sbottleneck rate, i.e., the upper bound imposed by the network path on the connection's
throughput. This rate plays a crucial role because it determines when closely-spaced packets must
necessarily queue behind each other in the network. Network conditions observed by such packets
arecorrelatedand must be treated separately from uncorrelated observations. In Chapter 14 we
discuss shortcomings of the main existing technique for estimating bottleneck bandwidth, “packet
pair,” and develop a robust algorithm, PBM (“packet bunch modes”), to address these problems.
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In addition, we characterize the range of bottleneck rates we observed among the various Internet
paths, and assess the stability of a path's bottleneck rate over time.

We then proceed in Chapter 15 to an analysis of patterns of Internet packet loss. We
look at many different facets of loss, including the differences between loss rates of data packets
and acknowledgements; correlations between loss rates along the two directions of a network path;
trends in loss rates; differences in loss rates due to geography; the duration of loss “outages”;
the location, with respect to the path's bottleneck element, where packet loss occurs; how well a
connection's observed packet loss predicts those of future connections; and how well TCP deals
with packet loss, in terms of retransmitting only when necessary.

We finish in Chapter 16 with an analysis of patterns of Internet packet delay. We look at
variations and extremes of round-trip times (RTTs) and one-way transit times (OTTs); symmetry in
OTT variation along the two directions of a network path; correlations between delay variations and
loss; how well a connection's delay variations predict those of future connections; the phenomenon
of packet timing “compression”; the time scales on which queueing occurs; and the degree ofavail-
able bandwidthpresent along Internet paths.

Chapter 17 summarizes the findings of both Part I and Part II, and sketches the main
themes of the work.

In the remainder of this chapter, we discuss our experimental methodology (x 9.1); those
aspects of the TCP protocol relevant to our study (x 9.2); and the raw data produced by the experi-
ment (x 9.3).

9.1 Methodology

In this section we discuss the methodology underlying the packet dynamics experiment.
We address two separate issues: how to make the measurements, and how to analyze them.

9.1.1 Measurement considerations

For our packet dynamics study, our measurement “probes” consisted of TCP transfers of
100 Kbyte files over different Internet paths. We discuss inx 9.1.2 the reasoning behind using TCP
for the study. The transfers wereunidirectional: data only flowed along one direction of the path.
Such connections are referred to asbulk transfers[DJCME92, Pa94a]. There are other classes of
traffic in the Internet (such as request/response, interactive, multicast, and real-time). All of these
ultimately boil down to dividing data into packets for delivery by the Internet's packet forwarding
infrastructure. Our goal is to characterize what happens to packets once they are in the hands of this
infrastructure. For this purpose, bulk transfers serve well, as they provide a fairly steady stream of
data packets traveling in one direction, and a corresponding stream of ack packets traveling in the
other. We can then analyze the fate and timing of the packets to determine how the two directions
of the Internet path performed.

Each transfer was traced using thetcpdump utility [JLM89] at both the sender and the
receiver, resulting in two trace files. We term the combination of the two trace files a “trace pair.”
Our findings are all based on analyzing trace files and trace pairs.

For security reasons, the NPD transfers used fixed TCP sending and receiving “ports,” so
tcpdump could immediately filter out traffic not related to the transfer. That we did so has two draw-



104

backs. First, it means that the traces lack some network traffic relevant to the transfer, namely any
associated Internet Control Message Protocol (ICMP; [Po81b]) messages. We discuss inx 11.3.3
how we inferred the presence of a particular type of ICMP message, termed “source quench.” In
addition, using fixed ports resulted in our measurements incurring aminimum separationbetween
consecutive measurements of the same pair of hosts, because TCP has rules governing how quickly
a pair of ports can be reused for a new connection.1

As with the routing dynamics experiment, we used exponentially-spaced sampling in-
tervals in order that our measurements might observe an unbiased sample of conditions along the
different Internet paths (x 4.3). We conducted two experimental runs,N1 andN2, detailed inx 9.3.
ForN1, source hosts were randomly paired with destination hosts, and we conducted a single mea-
surement for each pairing. The drawback of this approach is that, if we want to study how an Internet
path's characteristics change (or “evolve”) over time, then random pairing results in widely-spaced
measurements of individual pairs. For example, inN1 the mean sampling interval for a given pair
was about two days. Consequently, we cannot analyze much finer time scales of evolution.

We addressed this difficulty in the second run,N2, by randomly pairing source and desti-
nations intogroupsof measurements. Each measurement group consisted of two subgroups. Within
a subgroup, we conducted six measurements, separated by 180 sec plus exponentially-distributed
intervals with means 30 sec, 60 sec, 120 sec, 240 sec, and 480 sec.2 These spacings allow us to
analyze evolutions over short time intervals.

The two subgroups were then separated by an exponentially-distributed interval with
mean 2 hours, allowing us to characterize evolution over medium time intervals. In addition,
source/destination pairs would conduct additional groups of measurements separated from the pre-
vious group by another exponential interval with a mean of 12 hours. Finally, the pairs would be
revisited on the order of a number of days later. These last two groups of measurements allow us to
characterize relatively long time intervals, too.

9.1.2 Using TCP

Most previous end-to-end studies have used ICMP “ping” messages [Mi83, CPB93a] or
User Datagram Protocol (UDP; [Po80]) “echo” messages for their network probes [Bo93].3 Both
have the considerable advantage of logistical ease: most Internet hosts readily reply to “ping”
messages,4 and activating the UDP echo service is often a one line configuration tweak.

However, these types of probes also incur disadvantages. The most significant of these
is that of therate at which the probes are sent. To probe fine time scales requires sending closely-
spaced probe packets. Yet, if this is done blindly, say by deciding to send packets 1 msec apart,
then depending on the mismatch between the sending rate and the capacity of the network path, the
measurement traffic can grossly overload the path. Consequently, both “production” traffic sharing
the path suffers, and the measurements are skewed by the abnormal loading. Unfortunately, there
is a very wide range in network path capacity (we develop this claim in detail in Chapter 14 and

1Nominally, this minimum time is four minutes, twice the “maximum segment lifetime” of two minutes. In practice,
it varies between TCP implementations.

2The 180 sec constant interval was required to avoid problems with reusing the fixed source and destination ports,
discussed above.

3An exception is Mogul's study of TCP packet dynamics [Mo92].
4This is changing, with the advent of firewalls.
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Chapter 16), so there is noa priori correct choice to use for the probe spacing.
Furthermore, capacitychangesover the course of a series of probes, so we cannot deter-

mine a single correct choice for a path even after studying the path a bit. Therefore, ICMP- and
UDP-based measurement must make a trade-off between possibly overloading the network path,
and probing conservatively but with no possibility of analyzing finer time scales. In general, re-
searchers have prudently chosen the latter.

One could devise a probing strategy based onadaptingthe probe transmission rate to the
current network conditions. However, to do this properly, one essentially must implement TCP's
congestion control. At this point, it becomes easier to just start with TCP in the first place!

Another drawback with echo-based techniques is that the echo services return a full copy
of whatever packet they receive. Consequently, the measurement loads the network path both in the
forward and the return direction. If the measurement is conducted using “sender-only” techniques
(x 9.1.3), then the reverse-path loading makes it impossible to determine which direction of the path
is responsible for what proportion of the phenomena observed. If the echoes are insteadsmall, such
as are TCP acknowledgements for data packets, then the connection does not load the reverse path,5

which lessens the conflation of the two directions.
Both of these considerations, particularly the first, argue favorably for using TCP transfers

as network probes, since then, by construction, our probes do not load the network any more than
does a routine file transfer. Using TCP has one other major advantage: TCP is very widely used.
Consequently, the end-to-end performance observed by TCP transfers is a much closer match to the
service Internet users actually obtain from the network than are echo-based techniques. We will also
see in Chapter 11 that one result of our using TCP is to uncover a large variation in how different
TCP implementations perform, some with major performance and congestion implications.

Using TCP, however, also brings with it some serious drawbacks. The first of these is
that the TCP protocol behavior is quite complex. When casually inspecting TCP measurements,
it can be difficult to determine which facets of the overall connection behavior were due to the
state of the network path, and which were due to the behavior of the TCP implementations at the
endpoints. If our goal is to characterize the network path, wemustbe able to separate these two,
which entails understanding the nitty-gritty details of how different TCP implementations realize
the protocol. To do so, for our study we developed a program,tcpanaly , which has knowledge of
various TCP implementations and can analyzetcpdump traces in order to separate TCP endpoint
effects from those due to the network path. Writingtcpanaly was a significant undertaking, much
harder than we had initially anticipated (because we had not realized the wide range of real-world
TCP behaviors). We discuss it in detail in Chapter 11.

The other major drawback with using TCP is that often it sends small groups of data
packets at rates exceeding that of the network path's capacity (x 9.2.5). These packets necessarily
queue behind one another at the path's bottleneck. Therefore, for measuring the network's state such
a group constitutes acorrelatedset of probes. We address this difficulty at length in Chapter 14.

5There is one way in which small packets can contribute to load along the reverse path similarly to large packets. If a
congested router manages its buffers for queued packets on aper-packetbasis, rather than allocating the number of bytes
required to queue a packet out of a shared pool, then small packets consume the same amount of resource when queued at
the router as do large packets. In this regard, small packets can push the congested router to the point of buffer overflow
as fast as large packets do. Once, however, the small packets receive service, by transmission across their outbound link,
then their contribution to the router's load immediately diminishes, since they require significantly less transmission time.
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Furthermore, the TCP senderadaptsthe rate at which it transmits data packets based on
previously observed network conditions (in particular, packet loss, perx 9.2.6). Thus, even when
uncorrelated, the data packets donot reflect an unbiased measurement process, but rather one that
changes its sampling rate in order to try tominimizeobserved packet loss. We discuss this property
in Chapter 15.

On the other hand, for a TCP bulk transfer, both of these problemsonly occur along the
forward path. The traffic along the reverse path is comprised entirely of small acknowledgement
packets. These in general donot necessarily queue behind one another at the bottleneck, and,
furthermore, their transmission rate is adapted not to conditions along the reverse path, which they
observe, but to conditions along the forward path. We show in Chapter 15 that these conditions
are generally uncorrelated. Thus, the “ack stream” along the reverse path reflects a much cleaner
measurement process.

In summary, by using TCP transfers, we get two basic types of measurements: those that
correspond to conditions that TCP data packets encounter (the forward path), and those that tell us
about general Internet path properties (the reverse path ack stream). The combination makes for
rich analysis.

9.1.3 Tracing at both sender and receiver

End-to-end measurement is often done using what we term “sender-based” or “sender-
only” measurement, meaning that probes and their replies are recorded only at the location of the
probe sender. Sender-based measurement has the enormous logistical advantage of not requiring
access to the remote site in order to instrument the probe arrivals. Such access can be difficult to
gain, for administrative and security reasons.

On the other hand, sender-based measurement carries with it the limitation that from it
one can say little about how traffic behaves along the path's two different directions. For example,
suppose a measurement consists of sending a flight of 20 ICMP “ping” packets fromA to B, and
timing atA the arrival of their echoes. If only 6 echoes return, we have no way of knowing whether
B never sent the 14 others, because their corresponding pings never arrived atB; or if B did send
them, but they were lost on their journey fromB back toA; or if some combination of loss fromA
toB and loss fromB toA occurred. Consequently, it is difficult to say anything concrete about the
nature of the loss event.

This consideration becomes more subtle, but equally important, when applied to analyzing
packet delay. A sender-based scheme can only observe round-trip time (RTT) delays. These are per-
force the sum of the one-way transit time (OTT) delays in the two directions, plus the (unobserved)
delay of the receiver generating its reply. If the goal of the timing measurement is to estimate ca-
pacity along the forward path, such as for TCP Vegas [BOP94], then any delay variations incurred
on the return path are pure noise, and at best dilute the precision with which the sender can estimate
the path capacity.

Because we traced our transfers at both the sender and the receiver, we can fully separate
effects due to the forward path, the reverse path, and the processing delays at both the sender and
the receiver. Throughout our study we examine issues of path symmetry with an eye to gauging
the effectiveness of sender-only measurement. We find, overall, that such measurement is signif-
icantly less accurate than receiver-based measurement. Consequently, it behooves us to consider
mechanisms for coordinating measurement between sender and receiver.
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9.1.4 Analysis strategies

In this section we discuss the principles underlying our analysis of the measurement data.
They are all in response to three dominant considerations. The first is that we gathered a very large
volume of data: more than 20,000 transfers recorded at both sender and receiver. Each transfer
consisted of 100–400 packets, resulting in well over a gigabyte of data. The second consideration
is that we lack separate means ofcalibrating the measurements. All we have to work with are the
packet traces. It is easy toassumethat such traces accurately reflect the true number and timing
of the packets comprising the traffic we wish to measure, but no large-scale study has been made
to test the overall integrity of packet traces, so the validity of this assumption is unproven. The
third consideration is that network behavior almost inevitably includes “noise” in a variety of forms
and on a variety of scales. We observe “extreme” behavior much more often than we might expect
using a traditional statistical framework (such as one based on assumptions of normality and tame
correlations).

That we must deal with a large volume of data lies at the heart of our study: the study
is interesting precisely because the volume of data is large. By (very careful) analysis of it, we
have a hope of capturing a useful description of the immensely diverse behavior of the huge, het-
erogeneous network that is the Internet. We further argue that future Internet traffic studies must
likewise measure on a large scale, otherwise we have little hope of divining from them general re-
sults. Thus, a central contribution of our work is the set of approaches we develop to deal with this
large, uncalibrated, noisy mass of measurements.

In addition, in the hopes of abetting future studies, we will make our TCP data publicly
available via theInternet Traffic Archive, sited at:6

http://www.acm.org/sigcomm/ITA

The routing data analyzed in Part I is already available in the Archive, under the nameNPD-Routes.

Automated analysis

Confronted with 20,000 traces to analyze, it is clear that we cannot hope to individually
analyze each trace. We must instead turn toautomated analysis. That is, we realize part of our anal-
ysis in terms of a computer program that has coded into it the different reductions and calculations
required by the analysis. We briefly mentioned this program,tcpanaly , above. One of its basic
tasks is to separate TCP endpoint behavior from network behavior, hence its name. Another is to
then characterize the network dynamics reflected in the trace of the connection.

tcpanaly undertakes what we might call “micro-analysis.” It is limited in its scope
to analyzing single connections. The “macro-analysis,” namely the sifting through the individual
micro-analyses in search of unifying observations and themes (much in the sense of “scientific
inference,” as discussed in [Cha95]), is then done manually.7 Both forms of analysis are highly
iterative processes, and each gives insight into the other by identifying patterns that merit further
investigation.

6At the time of this writing, the Archive is moving from its old location to this URL. If the reader has any difficulty
accessing the Archive, send email tovern@ee.lbl.gov .

7We used theSstatistical environment [BCW88] for the macro-analysis.
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Self-consistency checks

To address the second problem—lack of separate calibration—we must turn to “self-
calibration” in the form ofself-consistencychecks: testing, to as great a degree as possible, for
any ways in which different aspects of the data contradict one another.

Calibration is all about detectingerror, whether introduced by the measurement process,
or by the subsequent analysis. Ideally, all of the effort is for naught; the data and analysis are wholly
free of error. Consequently, it can sometimes be tempting to skip calibration or treat it lightly,
since it only provides negative results. Doing so, however, undermines the entire validity of the
measurement process. Furthermore, our experience in conducting both this study and several other
large-scale studies [Pa94a, Pa94b, PF95] is that, when the scale becomes sufficiently large, errors are
inevitable, since even rarely observed problems have sufficient opportunity to manifest themselves.
Thus, we discuss self-consistency checks throughout our study. (For example, Chapter 12 is almost
entirely about developing self-consistency checks for calibrating the timing measurements recorded
in our traces.) The degree to which these checks prove persuasive is the degree to which one might
accept our findings as well-grounded.

Robust statistics

The final problem we must address with our analysis strategies is that of widespread noise.
For example, if we wish to summarize a connection's round trip times (RTTs), we might at first think
to express them in terms of their samplemeanandvariance(or standard deviation, the square root
of variance). However, in practice we find that often a connection observes one or two RTTs that are
muchhigher than the remainder. These extreme values greatlyskewthe sample mean and variance,
so that the resulting summaries do not accurately reflect “typical” behavior.

To address these sorts of problems, statisticians have developed the field ofrobust statis-
tics [HMT83]. These are statistics that remain resilient in the presence of extremes, or “outliers.”
One example is use of themedian, or 50th percentile, as a statistic for summarizing a distribution's
central location, rather than the mean. Unlike the mean, the median is virtually unaffected by the
presence of outliers.

In our study, we make heavy use of medians as robust estimates of central location. To
compute a median ofn points,xi = x1; : : : ; xn, we sort the points to obtainx(1); : : : ; x(n), and then
use:

median(xi) = x(n+1
2

);

if n is odd, or:

median(xi) =
1

2
(x(n

2
) + x(n+1

2
));

if n is even.
A robust statistic for measuring variation is theinterquartile range, or IQR [Ri95]. The

IQR is the difference between a distribution's 75th percentile and its 25th percentile. Thus, it char-
acterizes the distribution's “central variation.” It is likewise virtually unaffected by the presence of
outliers, since these by definition fall outside of the range of the values used to compute the IQR.
We likewise in our study often make use of IQR rather than standard deviation.

One other technique we borrow from robust statistics is that of fitting a line to a series
of hx; yi points. Techniques such as least-squares can be heavily skewed by trying to minimize the
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distance between the fitted line and any outliers. The technique we use, taken from [HMT83], is to
first estimate the slope of the line as the median of all of the pairwise slopes between the different
points, and then estimate the intercept as the median of the offset of they coordinates from a line
with the given slope and zero-intercept.

9.2 An overview of TCP

In this section we give an overview of how the Internet's TCP protocol works. We make
numerous references to its operation in subsequent chapters. Our presentation is not exhaustive, but
confined to those aspects of TCP relevant to our later discussion.

The main protocol used in the Internet for reliable data delivery is the Transmission Con-
trol Protocol, or TCP. TCP is specified in [Po81c], with updates and clarifications given by [Br89],
as well as several other documents specifying optional extensions [BJ88, BBJ92, Br94, MMFR96].
Stevens gives an excellent, detailed description of how TCP works [St94], and [WS95] analyzes an
entire TCP implementation line-by-line.8 TCP is implemented on top of the Internet Protocol, or
IP, described in [Po81a]. The combination is often referred to as “TCP/IP.”

9.2.1 Data delivery goals

TCP is a complex protocol, since it was designed to accomplish a number of objectives:

� In-order delivery, meaning that data is presented to the receiving application in the same
sequence as transmitted by the sending application.

� A byte-streammodel, in which the sender and receiver view the data simply as a series of
bytes, with no apparent boundary points (such as those introduced by packetization).

� Reliabledata delivery, meaning that all of the data transmitted ultimately arrives at the re-
ceiver with its original contents (i.e., undamaged).

Accomplishing these objectives in an environment where packets can be delayed, dropped, re-
ordered, duplicated, or corrupted is quite challenging. TCP achieves in-order, byte-stream data
delivery by assigning each byte of data asequence number, corresponding to its offset from the
beginning of the byte stream. It does so efficiently by associating with each data packet a beginning
sequence number (i.e., the sequence number of the first byte in the payload) and a length, which
then gives the packet's upper sequence number. In subsequent discussion, we will adopt the con-
vention of using upper sequence numbers to distinguish between different data packets. When this
identification is not unique, we will also give the time at which the packet was sent or received, to
disambiguate.

TCP achieves reliability by having the data receiver returnacknowledgements, or “acks,”
to the data sender.9 Each ack includes an acknowledged sequence number, which indicatesall
of the in-order data that the receiver has successfully received. For example, if data packets with
sequence numbers 1, 2, 3, 5, and 6 arrive at the receiver, then it can acknowledge up to sequence

8Both books also discuss other Internet protocols in depth.
9It also uses a 16-bitchecksumto verify data integrity, a point we return to inx 11.4.2.
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number 3. It cannot acknowledge 5 or 6, since they are not (yet) in-order. When the receiver
subsequently receives sequence number 4, then it can acknowledge all the way up to 6. Such acks
are termed “cumulative,” since receipt of any ack serves to acknowledge all of the data correctly
received so far. [MMFR96] describes a TCP extension for “selective acks” (SACKs), which allow
more detailed feedback of exactly which out-of-order packets have arrived at the receiver so far.
In Chapters 13 and 15 we study some aspects of the efficacy of this extension, finding that it has
considerable merits.

If a TCP sender does not eventually receive an ack for data it has sent, then it concludes
that the data packet was lost (“dropped” or “discarded”) during its journey through the network, and
it retransmits the data in a new packet. Such a retransmission is termed a “timeout retransmission,”
because it occurs when a timer expires indicating that enough time has elapsed that the packet was
presumably lost, since an ack should have been received by now. The amount of time to wait before
retransmitting is termed the retransmission timeout (RTO). Choosing a good value for RTO is a
major problem, which we discuss in more detail below. We discuss another form of retransmission
in x 9.2.7.

9.2.2 Achieving high performance

Achieving these objectives would be considerably simpler if TCP did not have another
goal, namelyperformance. Without performance considerations, one can achieve in-order, reliable
byte-stream delivery by simply sending one packet at a time until the receiver acknowledges it, and
then advancing to the next packet (“stop-and-go”). Stop-and-go can be tremendously inefficient
in terms of the performance achieved. If packets areb bytes and the round-trip time (RTT; the
interval between when a packet is sent and when the corresponding acknowledgement arrives) is
�T seconds, then even if the network path is completely unloaded and does not suffer from any
undue loss or delay, the maximum achieved throughput is:

� =
b

�T
: (9.1)

A typical value forb is 512 bytes, and a typical cross-country path in the U.S. has�T � 100 msec,
so � = 5; 120 bytes/sec, even though the path might be capable of transferring megabytes per
second.

TCP addresses performance issues in several ways. First, it sends packets that are as
large as possible. Each Internet path has a Maximum Transmission Unit (MTU), which is the
largest IP packet that can be transmitted along the path without incurring potentially expensive
“fragmentation” into smaller packets. An end-to-end path's MTU is the minimum of the MTUs
of the various links that comprise the path. When a connection is established between two TCP
endpoints, they negotiate a Maximum Segment Size (MSS), which is the largest amount of data each
TCP is prepared to receive in a single packet transmitted to it by the other TCP. In general, the MSS
is less than the MTU, since the MTU must also include the overhead associated with each packet,
namely its protocol header information.10 Given these considerations, TCP implementations strive
to transmit “full-sized” data packets, meaning those that carry MSS bytes of user data. They cannot
always do so, if the sending application has not provided them with enough data to completely fill

10Some TCPs confuse MSS and MTU, as described inx 11.5.4.
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a data packet. For our bulk-transfer connections, however, this is generally not a problem, and the
TCPs usually sent full-sized data packets.

Using full-sized data packets helps increaseb in Eqn 9.1, but never beyond MSS. Gener-
ally, MSS values are on the order of 512 bytes or sometimes 1460 bytes or 4 Kbytes, so this increase
alone does not suffice for achieving good performance along a high-speed path. The much larger
performance gain comes from havingmultiplepackets in flight at one time. If a TCP hask packets
in flight, then the potential throughput is:

� =
kb

�T
;

which can in principle match any available path speed (“bandwidth”) by using a suitably largek.
The problem then becomes how to choosek. There are two separate concerns: how fast

the receiver can accept data, and how fast the network can accept data. The first problem is referred
to as “flow control,” and the second as “congestion control.”

TCP addresses flow control by including in the receiver's acks an “offered window” (also
referred to as “advertised window”, “receiver window,” and, in some contexts, as simply the “win-
dow”). The offered window specifies how much new data the receiver promises to accept from the
sender. It reflects the buffer available at the receiver, which is used to absorb discrepancies between
the rate at which new data arrives at the receiver, and the rate at which the receiving application con-
sumes that data from the receiving TCP. When the available buffer changes, the receiving TCP may
send “window updates,” which are acknowledgements with revised values for the offered window.

The offered window is expressed in terms of a “credit” beyond the packet acknowledged
by the ack. For example, suppose the MSS is 512 bytes and the receiver has 4,096 bytes of buffer
available. If data packets with sequence numbers 512, 1024, 2048, and 2560 arrive,11 then the
receiver can acknowledge up to 1024, since the first two packets arrived in sequence. It cannot
acknowledge 2048 or 2560 because they arrived “above sequence.” So far, the receiving application
has not consumed any of the data, even though it could read the first 1,024 bytes if it wished. So
the receiving TCP needs to hold the data from all four of the packets in its buffer. Because it has
4,096 bytes of buffer, it can accommodate additional data up to sequence 4096, so in the ack it
includes an offered window of 4,096�1,024= 3,072 bytes, instructing the sender that it can ac-
commodate 3,072 bytes beyond what is has now acknowledged receiving. Note that it advertises
3,072 bytes even though it has already committed 4 packets worth of buffer, or 2,048 bytes, leav-
ing it with 2,048 bytes of uncommitted buffer. This works because the sender can only use the
3,072 byte credit as a window beyond the acknowledgement point (“ack point”). So it can only
transmit 2,048 bytes' worth of data not already buffered, namely those corresponding to sequence
numbers 1536, 3072, 3584, and 4096.

Suppose now the receiving application reads the 1,024 bytes that have been acknow-
ledged. (It cannot yet read the data in the later packets, since they are presently “above sequence,”
so they cannot be read in-sequence yet.) Now the receiving TCP no longer needs to buffer the first
two packets, so it can accommodate an additional 1,024 bytes from the sender. It may at this point
send another acknowledgement for sequence 1024, but this time with an offered window of 4,096,
allowing the sender to transmit all the way up to sequence1024 + 4096 = 5120.

11Where we are using the conventions that the sequence number refers to the upper sequence number carried in the
packet, and that data packets are always full-sized.
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When sequence 1536 arrives, then up to sequence 2560 may be ack'd, since the data up
to there can now be delivered in-sequence. When the sender receives the ack of 2560, its window,
meaning the range of data it can now send, “advances.” As part of this advance, the “upper edge”
of the window, meaning the largest sequence number the sender can transmit (equal to the ack point
plus the offered window), “slides” to a new maximum. Consequently, transport protocols using this
form of flow control are termed “sliding window” protocols.

In this fashion, the receiving TCP can (if it wishes) assure that it is always able to accom-
modate data arriving from the sender. If, for example, the receiving application ceases to consume
data, then eventually the TCP's buffer will fill. When it does, the TCP will advertise a window of
0 bytes, requiring the sender to cease transmission.

9.2.3 Congestion control

Quite separate from flow control is the vital performance issue ofcongestion control. The
limitation on how fast the sender should transmit may derive not from limited buffer at the receiver,
but limited capacity inside the network. Originally, TCP dealt with congestion control by setting the
RTO (retransmission timeout) to a multiple of the estimated mean RTT (round-trip time). When the
RTO expired, unacknowledged packets were retransmitted, and the RTO was doubled (“exponential
backoff”), so that during periods of high congestion, the connection would progressively lower its
sending rate.

In a landmark paper, Jacobson described the shortcomings of this form of congestion con-
trol: in particular, its excessive consumption of resources due to retransmitting multiple packets at
one time, and the instability that occurs because it does so precisely when the network has been over-
loaded to the point of packet loss. He also identified inadequacies in the RTO algorithm, which used
only the estimated mean RTT, without including an estimated RTT variance [Ja88]. He addressed
these problems by introducing a second window, thecongestion window(or, cwnd), and a modified
RTO algorithm that includes the estimated RTT variance, both of which have been incorporated into
the TCP specification [Br89, St97]. It is no exaggeration to say that the Internet works today only
because of these changes. Without them, the network would inevitably devolve into “congestion
collapse” (discussed below). Thus,proper TCP congestion control isvital to the Internet's stability,
a point we return to in Chapter 11, where we find that some TCP implementations fail to follow
these requirements.

We will focus on the first of Jacobson's changes, the congestion window.cwnd is com-
pletely separate from the receiver's offered window. At any time, a TCP sender must not send
beyond theminimumof the two windows. The offered window governs how much in-flight data
the receiver's buffer can accommodate, andcwndgoverns how much the buffers along the network
path can accommodate. The networking infrastructure, however, does not provide this latter infor-
mation explicitly (nor can it, for scalability reasons). Jacobson's insightful observation was that the
network path does, however, provide animplicit signal that its buffer resources are scarce: namely,
it drops packets. Thus, packet loss is interpreted as a sign of congestion (also observed by Jain in
[Jai89]). Such losses are termed “congestive losses.” While packet loss can occur for other reasons,
the presumption is that most losses occur due to congestion, and so merit a response by the sending
TCP: diminishing the rate at which it transmits packets. It does so by reducingcwnd.
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Figure 9.1: Sequence plot of a TCP connection during its “slow start” phase

9.2.4 Slow start

Jacobson discussed two different issues in managingcwnd. The first is what value to
use for it initially, which we address in this section. The second is how it should be cut upon
detecting loss, to adapt to congestion, which we address inx 9.2.6. His scheme addresses the
first issue by initializingcwnd to one packet (more precisely, to MSS bytes), so connections begin
by transmitting just one packet and waiting for an acknowledgement. Each ack that arrives then
increasescwnd by one packet (again, actually by MSS bytes). Thus, if the receiving TCP sends
an ack for every in-sequence packet it receives, then in the absence of loss the congestion window
will be 1 packet, 2 packets, 4 packets, 8 packets, and so on, where each increase reflectscwndafter
the packets in the previous “flight” have been acknowledged. (We use the term “flight” to refer to
a set of packets transmitted within a single RTT's worth of time.) Thus, in the absence of loss,
cwndincreases exponentially quickly. It continues to do so until either it is limited by the receiver's
offered window; or the connection suffers a loss, indicating that a network-imposed congestive limit
has been reached; or the connection completes before either of these occur.

This form of window increase is called “slow start,” since the window starts at a small
value, and hence the TCP transmits slowly at first. Figure 9.1 shows a “sequence plot” of the
packets sent and received by a TCP sender during its slow-start phase. We will make extensive use
of such plots and so describe them here in detail. Thex-axis gives time since the connection was
established. They-axis gives sequence numbers: these are either upper sequence numbers for data
packets (shown as solid squares), or acknowledged sequence numbers for acks (hollow squares).

Sequence plots are highly informative illustrations of what happens during a connection.
Here, the solid square atT = 0 sec with sequence number 1 corresponds to the “initial SYN”
packet. Each connection begins with the originator transmitting a packet with the “SYN” flag set
in the header to request establishment of a connection (“SYN” is short for “synchronize sequence
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numbers”). If the connection request is accepted, then the responder replies with a SYN acknow-
ledgement (“SYN-ack”) packet. If the sequence numbers in the SYN-ack accord with those that
the originator sent, then the sender acknowledges the SYN-ack and the connection has been es-
tablished. Because establishment entails exchanging three packets—the initial SYN, the SYN-ack,
and the final ack of the SYN-ack—it is referred to as a “three-way” handshake.12 TCP terminates
connections in a similar fashion, using an exchange of “FIN” (“finish”) packets and a final ack, for
another three-way handshake.

The initial SYN carries a sequence number of 1 because the SYN flag conceptually oc-
cupies the first sequence position of the byte stream. At aboutT = 0:07 sec, the plot shows the
arrival of an acknowledgement for sequence number 1. This is the SYN-ack packet. Shortly after,
the sender begins transmitting. It sends a single packet carrying 512 bytes (and with sequence num-
ber 513), becausecwndhas been set to one packet due to slow start. This data packet also carries the
ack for the SYN-ack packet, and hence completes the three-way handshake. When 513 is ack'd at
T = 0:17 sec, the congestion window opens to two packets, and these are promptly sent (sequence
numbers 1025 and 1537). Both of these are acknowledged by a single ack atT = 0:23 sec, which
openscwndby an additional packet, and three new packets are sent.13

At T = 0:30 sec, an ack arrives for the first two of the three packets in this flight. It
opens the window to four packets. Since one of these four is already in flight, the TCP only trans-
mits the three new ones. AtT = 0:36 sec an ack arrives for the third packet of the earlier flight
(sequence 3073). This is adelayedack, one that the receiver momentarily refrained from sending
in hope that more data would arrive and it could ack two packets at once. (The receiver employs an
“ack-every-other” policy for sending its acknowledgements, as do many TCPs.) Very shortly after
this ack arrives, so does another one, for sequence 4097, corresponding to the first two packets of
the most recent flight. Each of these acks advancescwndby one packet, so after both arrive,cwnd
is 6 packets. One of these is already in flight (and not yet unacknowledged), so the TCP sends the
other five.

Note that we can read the RTT directly from the plot: it is thex-axis distance between the
transmission of a packet and its acknowledgement, in this case about 70 msec.

The sending TCP continues to open upcwnduntil loss occurs. Ifcwndreaches the point
where it exceeds the size of the offered window, then the connection becomesreceiver-window
limited. Figure 9.2 shows a sequence plot of the same connection later in its transmission, when
this has occurred. We have added circles to the plot indicating the upper “edge” of the window,
that is, the sum of the offered window and the sequence number acknowledged by the ack (the “ack
point”). We see that the sending TCP closely tracks the upper edge, sending packets up to that limit
every time the edge advances.

9.2.5 Self-clocking

Another effect shown in Figure 9.2 is the important phenomenon ofself-clocking. In
the figure, each flight of data packets elicits in response an ack “echo” that preserves the temporal

12TCP uses a three-way handshake for reliability concerns that we will not describe further here; see [St94] for a
detailed discussion.

13One might expect thatcwndwould open by two additional packets, since the received ack acknowledges receipt of
that many packets. However, the TCP standard governing congestion window management [St97] specifies that, during
slow start, each ack for new data increases the window by one packet, regardless of how much new data has been ack'd.
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Figure 9.2: Sequence plot of a “window-limited” TCP connection

structure of the flight. When the flight of acks arrives at the sender, the window advances in step
with the echo, because the receiving application is consuming the data as fast as it arrives, and hence
the offered window remains constant—4,096 bytes, in this case. Because the connection is receiver-
window limited, the sending TCP then transmits new data whose temporal structure reflects that of
the window advances, and thus ultimately reflects that of the previous flight of data packets, so the
cycle continues.

The term “self-clocking” is also due to Jacobson. It comes from the observation that a
window-limited TCP connection will over time naturally pace out its data packets to exactly match
the bandwidth available along the network path. Figure 9.3, reproduced from [Ja88], illustrates
this property. The top “pipe” represents that network path from the sender to the receiver, and
the bottom pipe that from the receiver back to the sender. The thickness of each component in a
pipe reflects the bandwidth available at that part of the pipe, and horizontal distances correspond
to differences in time. Each packet occupies a portion of the pipe, shown as a shaded region. The
width of these regions indicates how long it takes the packet to traverse that portion of the pipe, and
the height reflects that the packet consumes the region's available bandwidth during the traversal.
In the figure, the sender has sent a number of packets back-to-back into the local, high-speed end
of the path. These packets travel through the network closely spaced, until they reach the path's
bottleneck(thin central region), where the available bandwidth sharply diminishes. At this point, it
takes much more time to transmit each packet, so they spread out in time.

The key observation underlying self-clocking is that once the packets have been spaced
out to a distancePb by the bottleneck, theyremainspaced out. That is,Pr in the figure is equal
to Pb. There is no mechanism for subsequently recovering their initial spacing.14 Furthermore,
such recovery is not desirable: the distancePb is in fact the optimal spacing for the connection's

14To first order. Seex 16.3.
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Figure 9.3: TCP “self-clocking.” Reprinted with permission from [Ja88], copyrightc1988 Asso-
ciation for Computing Machinery.

packets. If they are transmitted any closer together, they will simply have towait in a queue at the
bottleneck anyway, because it cannot accommodate a faster rate. So wewantpackets ideally to be
transmitted with a distancePb between them. Any less and they cause queueing without any gain
in performance. Any more and the connection underutilizes the available bandwidth.

The very nice property of window-based flow control is that, as the data packets arrive
at the receiver with a spacing ofPr = Pb between them, the receiver generates acks for them and
thesealsohave a spacingAr = Pr = Pb between them. Furthermore, the acks aresmalland arenot
spaced out by the bottleneck along the return path, even if it is smaller than that along the forward
path. Consequently, the acks arrive at the sender with a spacingAs between them, and because
the timing has not been perturbed,As = Pb. Finally, these acks then advance the window, and the
sender transmits new packets in response to them. The timing of the new packets, however, reflects
that of the acks, and hence they have a spacing ofPb, just as we desire. Thus, the connection
settles into a state in which it “clocks out” new packets at exactly the proper rate for the available
bandwidth.

Receivers that employ ack-every-other policies, such as that shown in Figure 9.2, perturb
self-clocking in only a minor fashion. Instead of generating acks with a spacingAr = Pb between
them, they generate acks with a spacing ofAr = 2Pb. Consequently, in the absence of extra delays
along the return path, they arrive at the sender with that same spacing. Note, however, that these
acks advance the window bytwo packets each instead of one packet, so the sender then transmits
two packets that are spaced a distancePr = 2Pb apart from the previous group of two packets. Thus,
over intervals of2Pb, the connection transmits at exactly the bottleneck rate. On finer time scales,
it can transmit faster, but the excess is only one additional packet, so very modest buffer space at
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the bottleneck can accommodate the burst. Inx 11.6.1 we will see other acking policies that involve
acking large numbers of packets with single acks. These can lead to highly bursty arrivals at the
bottleneck.

Self-clocking is an idealized state. In practice, connections might not self-clock due to
delay variations along the network paths in either direction, discussed in depth in Chapter 16. One
particular form of delay variation that defeats self-clocking istiming compression, which we discuss
in x 16.3.

Connections also do not self-clock when in the slow-start phase, since arriving acks do
not simply advance the window, but widen it also. Consequently, the average spacing between
the packets transmitted by the sender during slow start will be less thanPb. When the network
is unloaded, this behavior is not only acceptable but desirable, because our goal is tocontinually
send packets with intervals ofPb between them (“filling the pipe”). If we can accomplish this,
then the connection sustains transmission at the full available bandwidth, and we have achieved the
maximum performance possible along the given path. However, a TCP sender does not know in
advance the proper value ofPb (and the proper value might change over the course of a connection).
Slow start is a mechanism forhuntingfor the correct spacing, by continually opening up the window
until the connection finds itself in the self-clocking regime corresponding to the currently available
bandwidth. The difficulty with this hunt is knowing when to stop. TCP currently determines the
stopping point when it has driven the network to the point of packet loss (see below). But this point
corresponds to having exceeded the available bandwidth by a factor proportional to the available
buffer space, too, since Internet routers today only drop packets when their buffers are exhausted.
Thus, when beginning a connection, using slow start will oftendrive the network to the point of
loss, which is excessive, since we instead want them todrive the network to the limit of available
throughput.

There are proposals for modifying either TCP [WC91, WC92, BOP94] or the drop policy
used by routers [RJ90, FJ93] so that connections can find the available bandwidth without unduly
stressing the network. We comment on both approaches as we analyze our measurements. The TCP
modifications are of particular interest for our study because they rely on accurate packet timing
information, which we will find can be elusive.

In Figure 9.2, the connection fails to fill the pipe because it is receiver-window limited.
In general, to fill the pipe requires that the window size in bytes,w, exceeds the “bandwidth-delay
product,” i.e.:

w � �A � RTT; (9.2)

where�A is the available bandwidth in bytes per second, and RTT is the round-trip time in seconds.
We develop this relationship in detail inx 16.1. While estimating RTT is not difficult, estimating�A
is, so connections cannot readily use Eqn 9.2 to determine their correct window size. In Chapter 14
we discuss ways of estimating thebottleneckbandwidth,�B, which is an upper bound on�A, and
in x 16.5 we look at the relationship between the two.

9.2.6 Responding to congestion

The other fundamental component of Jacobson's modifications to TCP concerns how TCP
reacts tocongestion, i.e., periods when some element of the end-to-end chain of routers and links
is under stress: a sustained interval during which packets arrive more quickly than the element
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can service them. During congestion, the unserviced packets are queued at the congested router
until they can be serviced. If the congestion lasts long enough, the queues build and build until
eventually the queued packets exhaust the router's buffer. At this point, the router must discard
incoming packets.

Note that congestion spans aspectrumbetween busy periods during which queues grow
large, and periods when no more buffer remains and packets are lost. Thus, packets may or may
not be lost during congestion periods, depending on the sizes of the buffers and the duration of the
congestion. (We examine the interplay between delay and loss inx 16.2.4.)

Congestion is potentiallylethal to a network because it can lead to positive feedback that
sustains and even magnifies the congestion. In particular, if packet loss leads to retransmissions
that are sent at the same rate as the original packets, then the load borne by the network will not
diminish, and the congestion sustains itself. Packets from newly-initiated connections add further
to the load, leading to even higher levels of congestion.

The positive feedback can thus bring the network to a state ofcongestion collapse, in
which the network load stays extremely high but throughput is reduced to close to zero [Na84].
Exactly this happened in the early days of the Internet, and led to Jacobson's work on TCP conges-
tion avoidance [Ja88]. As discussed above, one of the key insights of that work is that the network
provides an implicit signal of congestion in the form of packet loss. Barring loss due to causes such
as transmission noise on a network link, the network should only discard packets if it no longer has
enough buffers to carry them. Consequently, when a TCP sender observes a packet loss, it should
infer that the network path is congested, and ease its use of the path by cuttingcwnd (and hence
limiting its transmission rate). It does so as follows.

First, upon retransmitting,cwnd is set to one packet, so the connection begins a “slow
start” phase in order to hunt for the correct value of the available bandwidth again. Second, the TCP
state variablessthresh(“slow start threshold”) is set to half of the window in effect at the time of the
retransmission (i.e., the smaller of either the offered window, or the value ofcwndprior to setting
it down to one packet). The intent behindssthreshis to denote the window size beyond which it
is likely that there is no more available bandwidth. The sending TCP should only gingerly expand
cwndbeyondssthresh.

As acks arrive for packets now transmitted by the sender, each increasescwnd by one
packet, per the usual slow-start increase. Oncecwnd reachesssthresh, however, then the TCP
increasescwndby only one packet per RTT. Thus, the rate at whichcwnd increases changes from
exponentialduring the slow-start phase tolinear during the “congestion avoidance” phase.

Figure 9.4 illustrates how a TCP timeout retransmission appears on a sequence plot. At
T = 2:3 sec, data up to 24577 has been acknowledged, and eight more packets are in flight, which
equals the offered window. A little later two more acks for 24577 arrive (“duplicates,” as discussed
in x 9.2.7 below). However, no additional acks are forthcoming. AtT = 3:4 sec, the RTO ex-
pires and the sending TCP retransmits the first unacknowledged packet, 25089. At this point,cwnd
has been set to 1 packet (which is why only one packet is retransmitted), andssthreshhas been
set to 4 packets, half of the window in effect at the time of the retransmission. The retransmit-
ted packet elicits an ack for 28673, corresponding to all of the outstanding data. This indicates
that only 25089 was dropped by the network—all of the later packets arrived at the receiver, so a
retransmission of 25089 was all that was needed to fill the sequence “hole.”

The ack for 28673 both advances the window edge and enlargescwnd to 2 packets, so
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Figure 9.4: Sequence plot showing a TCP timeout retransmission

the sender now transmits two new packets. As acks arrive, the sender continues rapidly increasing
cwnd in slow-start fashion. However, when the ack for 32257 arrives atT = 3:75 sec,cwnddoes
not increase from 5 packets to 6 packets, but remains at 5 packets, because the TCP has now entered
congestion avoidance. It is only after the arrival of the ack for 35329, the last in the plot, thatcwnd
increases to six packets.

While the above outlines the congestion avoidance principles, in practice there are many
fine points regarding exactly how congestive avoidance is implemented. (For example, why in
Figure 9.4 it took more than one RTT during congestion avoidance forcwnd to increase by one
packet.) We discuss a number of these in Chapter 11.

9.2.7 Fast retransmit and recovery

In addition to timeouts, TCP supports another retransmission mechanism, called “fast
retransmit.” It is also due to Jacobson. Although not part of the TCP specification, it is widely
implemented. Fast retransmission is an attempt to avoid the sometimes lengthy lulls a connection
experiences upon a loss, due to the RTO being much larger than the RTT. Figure 9.4 above illustrates
the problem. For this connection, the RTT was about 65 msec, but the RTO wait was 1.2 sec.

In general, RTO should be larger than themaximumRTT a connection's packets might ex-
perience, in order to allow enough time for acks to arrive. Yet, it is difficult to estimate this maximum
due to frequent fluctuations in RTT, and, furthermore, it is important to estimate it conservatively,
i.e., overestimate it rather than underestimate it, so that packets are not needlessly retransmitted.
(We will see the effects of underestimation inx 11.5.10.) Finally, many TCP implementations have
access to only coarse-grained clocks, so it is difficult for them to time small RTOs.

To address this problem, Jacobson noted that TCPs receive an additional, implicit signal
when a packet has been lost. This signal comes in the form of the arrival of “duplicate acks.” When
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Figure 9.5: Sequence plot showing a TCP “fast retransmission”

above-sequence data arrives at a TCP receiver, the specification states that the TCP should generate
a redundant acknowledgement.15 These are termed “duplicate acks” or “dups.” In Figure 9.4 we
see two of these arriving atT = 2:33 sec andT = 2:53 sec. Since all but the first packet beyond the
ack point arrived at the receiver, it should have sent 7 dups. From the plot, we cannot tell whether
it did so but 5 were lost, or if it failed to do so. (It turns out that, in this case, it failed to do so. The
TCP implementation was one that does not include the recommended generation of dups.)

Fast retransmission works by counting duplicate acks, and, if their number reaches a
given threshold,Nd, then the sending TCP infers that the packet beyond the ack point was lost, and
retransmits it. Current implementations useNd = 3. This value was chosen as a trade-off between
not missing fast retransmit opportunities because too few dups arrive, versus not misinterpreting the
arrival of dups and retransmitting unnecessarily. The latter can occur when packets arrive out of
order. Inx 13.1.3 we examine how wellNd = 3 performs, and find that it does very well, almost
always detecting true loss and not being fooled by reordering; and, further, thatNd = 2 would result
in TCPs being fooled significantly more often.

Figure 9.5 shows a sequence plot depicting a fast retransmission. Packet 36865, originally
transmitted atT = 0:85 sec, was lost, but all of its 6 successors arrived successfully. These then
elicit six dups, the third of which causes a fast retransmission atT = 0:93 sec. At this point,cwnd
is one packet andssthreshis 4 packets. When the retransmission is ack'd atT = 0:98 sec, slow
start advancescwndto 2 packets, and then to 3 packets upon receipt of an ack for those two.16

Fast retransmit works very well for eliminating the lengthy timeout lull, provided enough
above-sequence packets arrive at the receiver to elicit at least 3 dups. (If the receiver's offered

15It also does this if below-sequence data arrives, i.e., unnecessarily retransmitted data. We explore the distinction
between these two inx 13.1.3.

16The apparent duplicate ack for 39937 is in fact a “window update,” perx 9.2.2. TCPs are careful to distinguish
between window updates and true duplicates, as the former do not indicate the safe arrival of an additional data packet.
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window is small, or ifcwndis small, then this may be a problem.) Jacobson further refined it with a
mechanism termed “fast recovery.” The observation underlying fast recovery is that each additional
dup beyond the firstNd = 3 indicates that another data packet has arrived at the receiver. Thus, it
is sound to increasecwnd (which was cut to 1 packet upon the fast retransmission) by one packet
for each of these, though not to exceedssthresh. Furthermore, it is sound to increasecwndby Nd

packets upon a fast retransmission, too, because each of the firstNd dups likewise corresponds to a
successfully received packet.

Thus, fast recovery openscwndmore quickly. If this were all that the TCP did, then fast
recovery would lead to a large burst when the TCP received an ack for the retransmitted packet
(T = 0:98 sec in Figure 9.5), because at this pointcwndwould often be much larger than 1 packet
(then increased in Figure 9.5 to 2 packets by the arrival of the ack). To eliminate this burstiness, fast
recovery also specifies that, if the TCP receives enough additional dups, it then begins transmitting
newdata,beforeit has received an acknowledgement for the retransmitted data. Thus, the algorithm
looks like:

1. Upon receiving 3 dups, setssthreshto half the effective window, setcwndto one packet, and
retransmit the first unacknowledged packet.

2. Next, “inflate”cwndusing:
cwnd ssthresh+ 3;

where the constant 3 reflects the three duplicates already received.17

3. Whenever another dup arrives, increasecwnd by one more packet. Ifcwnd is now large
enough to transmit new data, do so.

4. When an ack arrives that advances the ack point to or beyond the last packet that was in flight
prior to the fast retransmission, then fast recovery ends. Execute:

cwnd ssthresh

to “deflate” the window to its proper post-recovery size, and updatecwnd from the ack nor-
mally.

Figure 9.6 illustrates how fast recovery appears on a sequence plot. A number of dups
arrive for 74573, which is retransmitted after the third dup is received (i.e., after four acks for 74573
arrive, the first being the “original” and the others being dups). Prior to the retransmission, the
window was 8 packets, so after the retransmissionssthreshis 4 packets, and after window inflation,
cwnd is 4 + 3 = 7 packets. The next dup advancescwnd to 8 packets, but the TCP already has
8 packets' worth of data in flight, so it cannot retransmit at this point. The dup after that, though,
arriving atT = 7:94 sec, advancescwnd to 9 packets, and this is enough to liberate a new data
packet, 79361. Two more dups after it advancecwnd to 10 and 11 packets, and two more data
packets are sent. Then, atT = 7:96 sec, all of the data outstanding prior to the retransmission is
ack'd (closely followed by a window update, the second ack shown overlapping with the first). At

17We have simplified discussion by presenting the algorithms in terms of full-sizedpackets, when in fact they are
implemented in terms ofbytes. Provided all of the packets contain a full MSS' worth of data, these two are equivalent.
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Figure 9.6: Sequence plot showing TCP “fast recovery”

this point, the window deflates back tossthresh, or 4 packets. The ack is then processed, and since
this TCP's test for congestion avoidance is

cwnd> ssthresh

rather than
cwnd� ssthresh

(used by some other TCPs), the connection is deemed still in slow start, so the ack advancescwnd
to 5 packets. Three of these are already in flight, so the TCP transmits two new packets. Thus, the
TCP was able to continue transmitting, and ended the retransmission period withcwndhaving just
entered congestion avoidance, and it did so without generating any unduly large bursts.

We make one final point regarding fast recovery. The window inflation and deflation is
subtle (and often confusing). It arises due to conflating the meaning ofcwndto be both “how many
packets the connection can have in flight” and “how far above the ack point can the connection
transmit.” During fast recovery, these notions are separate, since some of the packets above the
ack point are indeed no longer in flight (because they are what caused the dups). Because these
points are subtle, we should not be too surprised to learn in Chapter 11 that TCPs implementing fast
recovery suffer from more than one bug in managing the window deflation.

9.3 The Raw Measurements

Table XIV lists the 35 sites that participated in the two experimental runs,N1 andN2.
Tables I and II in Part I summarize the sites.

We conducted the first run,N1, during December 1994, coincident with the routing study.
Likewise, we conducted the second,N2, during November–December 1995. As with the routing
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Name #N1 #N2 Tracing machine

adv – 1,244
austr 207 1,036 BSDI 1.1
austr2 – 1,259
bnl 307 1,200
bsdi 166 1,374
connix 308 1,474
harv 190 1,061
inria 172 1,180
korea 49 – HP/UX 9.01
lbl 318 1,412 SunOS/BPF
lbli 230 1,134 SunOS/BPF
mid – 1,295
mit 308 –
near – 1,296 SunOS/BPF
nrao 301 982
oce 126 838
panix – 240
pubnix 148 1,085
rain – 1,289
sandia – 1,182
sdsc 259 964
sintef1 – 1,469 NetBSD 1.0
sintef2 – 1,524 SunOS/BPF
sri 194 1,306
ucl 230 1,266
ucla – 1,397 SunOS 4.1
ucol 275 1,208 SunOS 4.1 (N1)
ukc 299 989 SunOS 4.1
umann 222 998
umont 144 1,469 SunOS 4.1
unij 74 1,412 SunOS 4.1
usc 231 – SunOS 4.1
ustutt 240 1,165
wustl 304 1,232
xor 316 –
Total 2,805 18,490

Table XIV: Sites participating in the packet dynamics study
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study, differences betweenN1 andN2 give us an opportunity to analyze how Internet packet dy-
namics changed during the course of 1995.

The second and third columns give the number of connections in which the site partici-
pated as either sender or receiver. The final column lists the operating system of the machine used
to trace the site's TCP traffic, or empty, if the tracing was conducted on the same machine as ran the
TCP. Tracing systems listed as “XYZ/BPF” had the Berkeley Packet Filter installed [MJ93], which
greatly aids with accurate packet measurement. One site,ucol , changed its measurement setup
betweenN1 andN2, using a separate machine duringN1 but the same machine duringN2.

As discussed above, each measurement was made by instructing the Network Probe Dae-
mons (NPDs) running at two of the sites to send or receive a 100 Kbyte TCP bulk transfer, and to
trace the results usingtcpdump . An important difference betweenN1 andN2 is that inN2 we used
Unix socket options to assure that the sending and receiving TCPs had sufficiently large buffers that
they were never “window limited” (x 9.2.4), to prevent window limitations from throttling the trans-
fer's throughput. This change has a downside, which is that it sometimes clouds apparent trends
between theN1 measurements and theN2 measurements with questions concerning whether the
trends are simply artifacts of using bigger windows inN2. Nevertheless, the change was worth
making, since the bigger windows enabled theN2 connections to push considerably harder on the
network path, with more opportunities to observe the amount of resources the path had available as
a result.

Finally, we limited measurements to a total of 10 minutes, as a mechanism to prevent
measurement attempts from indefinitely consuming resources at the NPD sites. This limit leads to
under-representationof those times during which network conditions were poor enough to make it
difficult to complete a 100 Kbyte transfer in that much time. Thus, our measurements arebiased
towards more favorable network conditions. Inx 15.1 we show that the bias was negligible for
North American sites, but noticeable for European sites.


