
Adapting to Wide-Area Network Dynamics

Vern Paxson
EECS Division, University of California, Berkeley

vern@cs.berkeley.edu

Dissertation proposal / Qualifying exam

September 22, 1994

1 Motivation

Becauseof its efficientuse of network resources and resilience in the
presence of failures, packet-switching forms a key element of the
global Internet’s architecture [Cl88]. The gains of packet-switching
come from sharing common resources among many network users.
These gains in turn lead to the central problem of packet-switching:
the network as seen by a particular user changes over the course
of time, requiring the user to either adapt to the changes or suffer
from a mismatch between the user’s expectations of the network’s
behavior and the network’s actual condition. Not only might users
fail to use the network efficiently if they do not adapt appropriately,
but if the network is overloaded and users do not scale back their use,
the entire network can suffer “congestive collapse” and essentially
cease functioning [Na84].

The principle technique used for adapting to changing network
conditions isflow control, in which a network connection has asso-
ciated with it either awindow limiting the amount of outstanding
data it can have in transit through the network, or arate limiting the
pace at which it injects data into the network [GK80, Ja90a]. The
problem of adapting to changing network conditions then reduces
to the question of what window size or transmission rate to use.

A key point is that the required degree and quality of adapta-
tion increases with time. For example, the TCP/IP internetwork
used the simplest possible window algorithm—a constant window
size—for a number of years. Initially, this proved adequate, but
as the network grew the rigidity of the algorithm eventually led to
congestive collapse [Ja88]. At that point, Jacobson introduced an
adaptive window technique calledslow start, which is now required
for all Internet hosts, and which has prevented further congestive
collapse. In slow start, the window is initially set as small as feasi-
bly possible. With each acknowledged packet, the window is then
increased, since the acknowledgement indicates the network still
has available capacity. A lost packet, on the other hand, indicates
that the network is congested, and the window is cut back at that
point. Slow start has a number of refinements (and problems) be-
yond this simple description, but the key point we wish to make is
that it illustrates how adapting to changing network conditions can
radically improve network performance.

In the future, adapting to changing network conditions will be-
come both more vital and more difficult. It will become more vital
because network conditions will become more and more variable,
and it will become more difficult because network connections will
have less and less time to adapt to changing conditions. We argue
each point in turn.

Previous work has already shown that there is no typical traf-

fic profile; rather, the “mix” of which application protocols dom-
inate the traffic at a particular site varies greatly from site to site
[DJCME92, Pa94a]. Furthermore, the traffic mix at a particular
site varies considerably over time, and the characteristics of in-
dividual application protocols vary significantly from site to site
[Pa94a]. In addition, both overall network use and network use
at individual sites has exhibited sustained exponential growth over
many years1. New applications such as X11, World-Wide Web, and
audio/video traffic can exhibit explosive growth [Pa94b]. Finally,
the recent success of “self-similar” stochastic models of network
traffic [LTWW94, PF94] matches the observation that aggregate
network traffic shows large variations across all time scales, ranging
from milliseconds to months, even in the presence of high degrees
of multiplexing [FL91].

These findings all dramatize how difficult it is to devise solutions
to networking problems unless one has some knowledge about the
current state of the network. As network use grows and becomes
more heterogeneous, these problems become more and more acute.

Another dimension to the problem is that network bandwidth
is increasing extremely rapidly. For example, over a six year pe-
riod the speed of the NSFNET backbone links grew from 56 Kbps to
45 Mbps2, increasing 200%/year [CBP94]. As bandwidth increases,
it becomes harder for connections to fully utilize the available band-
width without attempting to overuse it. If a connection underutilizes
the available bandwidth, it both suffers poor performance, and its
traffic becomes bursty. In the absence of fair queueing schemes
[DKS90], such burstiness then spreads to other, previously well-
behaved connections. On the other hand, if a connection overuses
the available bandwidth, well-behaved connections again are af-
fected, now by incurring unwarranted delays or losses.

Thus, in the future it will be increasingly important for network
connections to discover and adapt to the current network conditions.

Rapidly increasing bandwidth leads to another important effect.
Because the lower bound of end-to-end delay in networks is limited
by the (constant) speed of light, as bandwidth increases, the net-
work carrying capacity (bandwidth-delay product) increases too.
This increase is particularly relevant for wide-area network traffic,
which is our scope of interest in this proposal. Larger bandwidth-
delay products mean that network connections will have more data
“in flight”. But our previous work characterizing TCP connections
[Pa94a] showed that the median size of TCP connections is either
not increasing over time, or only increasing slowly. Since the size of
the network “pipe” is increasing but connection sizes are not, con-

1For example, in the last five years the Internet has grown from 130,000
hosts to 3,200,000 hosts, a rate of 90%/year.

2And this will increase to 155 Mbps by 1995.

1

nections will take fewer and fewer round-trip times to transmit their
data. While this is a performance boon from the user’s perspective,
it makes adapting to network conditions more difficult: because it
takes a round-trip time to discover anything about network condi-
tions, future connections will have fewer and fewer opportunities
to adapt. Ultimately,most connections will fit into a single round-
trip time, and thus will haveno opportunity to adapt the later part
of their transmission based on observations of how the first part
of their transmission fared. Because of this impending “feedback
crunch”, with high-speed networks it will become vital to estimate
as much as possible about current network conditions based on the
performance ofpastconnections.

These arguments motivate our dissertation proposal, which has
three elements. First, develop techniques for inferring as much as
possible about network conditions based on observing traffic pat-
terns. Second, demonstrate the effectiveness of these techniques by
showing that they can be used by a network connection to optimize
its present performance based on analysis of its past performance.
Third, determine how a new network connection can best utilize
information gathered by past connections to do the same sort of
optimization.

In the remainder of this paper we expand on each of these
elements in detail. While in this proposal we restrict ourselves
to adaptive techniques available to network transport endpoints, the
same principles (with some alteration to mechanisms) apply to in-
ternal network routers as well.

2 Sources of Information About the
State of the Network

Today’s transport protocols use several sources of information in
order to adapt to network conditions:

� Reliable communication requires some form ofacknowl-
edgements(“acks”). These are messages sent by the data re-
ceiver to the data sender indicating either which data packets
have arrived successfully (positive acks), which are missing
(negative), or a combination of the two (selective).

� Related to acks, thelossof a packet is interpreted as a sign
of possible network congestion.

� The round-trip time(“RTT”) is estimated by timing the in-
terval between transmitting a selected packet and receiving
its acknowledgement. An estimate of an upper-bound on the
RTT is used in setting retransmission timers in order to deter-
mine that a packet has been lost (in the absence of negative
acks).

� Duplicate(repeated) acks are used as a form of negative ack,
to spur retransmission of an apparently missing packet.

� The advertised receiver windowindicates the buffer avail-
able at the receiver, which limits the amount of unacknowl-
edged data the sender can have in flight.

� The time structure of the received acks forms aself-clocking
mechanism, used to implicitly adapt to current network ca-
pacity (see [Ja88] for a nice illustration). We will return to
this notion in greater depth below.

� Explicit congestion-notification signalsare sent to the data
sender by routers internal to the network, to indicate that the
network is heavily loaded.

These information sources are all used by current TCP
implementations.3 Other reliable transport protocols such as TP4,
XTP, VMTP, SNR, NETBLT, Delta-t and MSP [CLZ87, WM87,
CW89, DDKMRW90, NRS90, BD92, PS93] do not incorporate
any additional information sources, except as we discuss shortly.

We make a distinction here betweeninformation sourcesand
adaptation algorithms. There are, for example, many proposed
modifications to TCP to alter how it responds in light of the infor-
mation it gathers. Our emphasis is not on new adaptation algorithms
utilizing existing information, but on acquiring new sources of in-
formation, and then investigating how these new sources might in
turn lead to new adaptive algorithms.

The information sources discussed above allow a transport end-
point to answer several types of questions: Did the data arrive suc-
cessfully? Is the network heavily congested? How long to wait
before deciding a packet was lost and needs retransmission? Is
there a hole in the data “pipe”? Does the receiver have adequate
buffer for more data?

There are a number of additional questions we’d like to be able to
answer, which require additional information about the network’s
state:

� Is there a pipelining mismatch?Fully utilizing the network
requires transmitting data at a rate matching that of the slow-
est link. This link is referred to as the “bottleneck”. While
the bottleneck may be the speed of the sending or receiving
processor, usually the limit is the transmission speed of one
of the elements of the network path. Assuming that the net-
work is indeed the bottleneck, then this question is equivalent
to asking, Is the window size (or, equivalently, sending rate)
too large, too small, or correctly matched to the capacity of
the network? To answer this question, we need to know the
bottleneck bandwidth.

� Is congestion building up?Rather than waiting for packet
drops as indications of congestion, we would like to rec-
ognize congestion just as it begins, before the congested
gateway’s queues become completely full. Answering this
question requires information regarding variation in queue-
ing delays along the network path.

� How much are we adding to queueing?If our packets are
waiting in queues inside the network, then we are buy-
ing a modest decrease in latency at the cost of increasing
the network load. Different applications have different la-
tency/throughput requirements, and thus different tolerances
for how much queueing they incur, but they can all bene-
fit from information regarding their contribution to overall
network load. Todetermine whether we are adding to queue-
ing requires comparing the predicted RTT change for a given
window or rate adjustment vs. the observed change. Predict-
ing the RTT change in turn requires estimating the bottleneck
bandwidth and the propagation time for the network path.

� Is self-clocking working correctly?As mentioned above,
TCP relies on self-clocking to pace its packets at the correct
output rate. Self-clocking fails, though, in the presence of
ack compression, which occurs when the time structure of

3Though selective acks are not widely implemented, and the only
congestion-notification signal TCP responds to is the now-deprecated
“source quench” ICMP message [St94, p. 161]. Recently, several refined
congestion-notification signals have been proposed [RJ90, FJ93].

2

acknowledgements is destroyed by adverse network dynam-
ics. We discuss the phenomenon of ack compression, along
with ways that an endpoint can detect it, in Section 5 below.

One recent additional source of information is the variation of
round-trip time. Adaptation algorithms using this information are
based on the following insight: If increasing a connection’s window
size leads to an increase in RTT, then the connection is contributing
to queueing (and hence congestion) [Ja89]. Jain’s work is theo-
retical. Wang and Crowcroft have since proposed a scheme for
incorporating RTT variation into TCP to avoid periodic packet loss
due to excessive load [WC92], and to avoid contributing to queue-
ing [WC91]. Along similar lines, Sanghi and Agrawala have de-
vised DTP, a transport protocol similar to TCP but which uses RTT
measurements of past packets to time the sending of new packets
[SA91]. More recently, the authors of the “Vegas” modifications to
TCP [BOP94] propose using increases in RTT to assure that each
TCP connection acquires a minimum of� buffers at the bottleneck
queue, and a maximum of� buffers, where 0< � < � (though
this approach appears too aggressive because it is guaranteed to add
load to an already-congested network).

The thrust of these recent approaches has been to use RTT vari-
ation to answer the second and third questions posed above, as well
as indirectly addressing the question of bottleneck bandwidth. An
important point, however, is that to reliably interpret RTT variation,
one must first answer the final question—is self-clocking working?
To our knowledge, detection of ack compression has not been in-
corporated into any transport protocol mechanisms. We return to
this point in Section 5.

If one can provide accurate estimates of the quantities needed to
answer these questions, then one has the fundamental information
needed to implement a variety of theoretical schemes for optimizing
network performance [Ja81, Ja89, MS90, SA91]. We now turn to
the specifics of our research proposal, the foundation of which is
to refine existing methods and develop new methods for estimating
these quantities, and then to build on the new information sources
to optimize wide-area network performance.

3 Overview of the Proposal

The general goal of our proposed research is to first develop meth-
ods of gathering as much information as possible about a network’s
current state, and then to show the utility of this information by ap-
plying it to a particular networking problem. Our emphasis will be
on how information can be gathered by a transport connection end-
point operating on the Internet, but it is important that we also keep
in mind how the techniques might be modified for use by network
routers, so we can in the future perhaps move the adapting entity
into the network rather than relying on endpoints.4 Similarly, since
one of our goals is to develop techniques applicable to the Internet,
we need to also keep in mind the degree of compatibility our tech-
niques allow: whether they can be done with no modifications to
existing protocols; by introducing new protocol options; by modi-
fying routers; or only by modifying the protocols. Our belief is that
much of the information we want to gather can be acquired without
introducing incompatibilities; we cover this further in Section 4.

We propose conducting a series of three experiments:

4Inparticular, if we rely on adaptive techniques to ensure that the network
remains stable, then it is administratively far easier to require routers to run
particular adaptive algorithms than endpoints.

1. Using both existing and newly-developed techniques to
gather information about network conditions, characterize
the dynamics of Internet queueing, bottlenecks, losses, qui-
escence, congestion, and ack compression. The methodol-
ogy for the experiment is to use TCP packet streams from
and to a variety of Internet sites as probes of the network’s
state.

2. Apply these characterizations to the “bandwidth discovery”
problem, in which a connection infers the bandwidth avail-
able to it by observing its past performance and adjusting its
sending rate accordingly.

3. Assess the degree to which past information regarding band-
width discovered by previous connections can then be incor-
porated into optimizing new network connections.

We discuss these experiments in Sections 6, 7, and 8 below.

4 Acks as RADAR Echoes
A key claim of our proposal is that a large amount of information
about network conditions can be inferred by a connection endpoint,
without any assistance from the routers along the connection’s path.
In this section we present the basis for this claim.

The basic operation of a sliding-window protocol such as TCP is
as follows:

1. The sender transmits packeti at timeti.

2. The packet incurs a delaydi traversing the network, arriving
at the receiver at timeti + di.

3. After some amount of processingpi, the receiver acknowl-
edges the packet at timeti + di + pi.

4. The acknowledgement takes timeai to traverse the network,
arriving back at the sender at timeti + di + pi + ai.

5. With the new acknowledgement the window slides forward,
allowing the sender to transmit packeti +w after a processing
delayp0

i, wherew is the window size.

The round trip time for packeti is then

RTTi = di + pi + ai:

Acknowledgements are small enough that their own contribution
to queueing on the return path is negligible. If, then, the acknowl-
edgements do not encounter any significant queueing, the quantity
ai will be constant.5 Furthermore, if the receiver generates ac-
knowledgements promptly (more on this below), thenpi will be
small, and we can approximatepi + ai as a constant. This then
gives us the relationship:

RTTi � di + :

Thus, apart from a constant offset , the quantity RTTi, which
we can measure, also gives us the one-way delaydi. We thus can
construct a time series sample pathfRTTigi=1;2;:::, whose structure
can in turn tell us a great deal about the condition of the links over
which the packets traverse. In this sense, we can view a packet’s
acknowledgement as a “RADAR echo”: we bounce a packet off
a distant object (the receiver), and the time structure of the echoes
reflects the distortions introduced by the network internals.

5We test this assumption in Exp. #1 (Section 6).

3

In order both to gauge how good an approximation it is to hold

constant and to then interpret whatdi tells us about network condi-
tions, we need to analyze the different sources of delay that a packet
and its acknowledgement might encounter. We can categorize these
delays as follows:

� transmission: time required for the packet to traverse the
physical links. For a path with propagation delayP and
bandwidthB bytes/second, a packet of sizeb bytes will have
a transmission time ofT = P + b =B seconds.

� bandwidth: because of the relationship described in the pre-
vious item between bandwidth, transmission delay,and prop-
agation delay, we will considerbandwidth as a delay element.

� media access: for example, with an FDDI ring, the time
waiting for the token, or, with an Ethernet, until the packet
is transmitted without collision.

� receiver protocol processing: time required for interrupt
scheduling, interpreting the packet, creating the correspond-
ing acknowledgement, and beginning its transmission. Ex-
cept for contributions due to the next two items, this overhead
is equal to the timepi discussed above.

� delayed acks: many TCP implementations do not immedi-
ately acknowledge received data, but instead schedule an ac-
knowledgement for later delivery, in the hope that more data
will arrive in the interim and the acknowledgements merged.
For Berkeley-derived TCP implementations, for example,
this delay can introduce a lull of 0-200 msec [WS94]. This
extra delay contributes topi.

� receiving process can’t keep up: if the receiving process
can’t consume the incoming data fast enough, it will lead to
delays: either an increase inpi, if acknowledgements are not
sent until the receiving process frees up some buffer space,
or an increase inp0

i, if the sender is prevented from sending
due to the window closing.

� sending process can’t keep up: if the sending process can’t
provide data fast enough, thenp0

i will inflate due to waiting
for new data to accumulate.

� router processing: time required for the intermediary routers
to forward the packet once it reaches the front of the send
queue.

� queueing: the remainder of delay is due to time spent by the
packet waiting in queues at the intermediary routers.

By observing the structure of the time seriesfRTTig, a con-
nection endpoint can assess or account for these delay sources as
follows:

� transmission: the minimum RTT observed gives an upper
bound on the transmission delay.6

� bandwidth: we can estimate the bottleneck bandwidth using
a variant of the “packet pair” technique [Ke91], which works
as follows. We transmit two packetsn andn + 1 back-to-
back, separated by a small amount of time�. Each packet is

6Except if the network path changes. We can detect route changes to
some degree by noting the arrival of out-of-sequence IP packets, or a change
in the TTL hop-count in the IP header.

of sizeb bytes. If the receiver and the network are unloaded,
then the acknowledgement echoes will arrive at times:

en = tn + dn + pn + an

en+1 = tn+1 + dn+1 + pn+1 + an+1

= tn + � + dn+1 + pn+1 + an+1

= tn + � + dn+1 + pn + an

where the last equality comes from the assumption that the
receiver and the network are unloaded, hencepn+1 = pn

andan+1 = an.
Consider the quantitydn+1 � dn, the difference in propa-
gation time experienced by the two packets. Since the net-
work is unloaded, this difference is� plus the amount of time
packetn + 1 must wait while packetn propagates across
the bottleneck link. The key here, however, is that we do
not have to wait for packetn to propagate entirely across the
link, but only for its last bit to begin propagating, after which
we are free to send the first bit of packetn + 1.

After packetn’s arrival at the (unloaded) bottleneck, it takes
timeb =B for packetn’s last bit to begin propagating. Packet
n + 1 arrives at the bottleneck at time� after packetn ar-
rived, so it must wait for a timeb =B�� until it can begin
transmission (assuming� < b =B).

Once both packets have traversed the bottleneck, the result-
ing spacing between them is preserved. This gives us the
following relationship:

b =B�� = dn+1 �d n

B̂ =
b

en+1 �e n

:

The analysis of packet pair in [Ke91] requires that the net-
work uses fair queueing internally, but the principle still
holds for FIFO queueing if the network is unloaded. In par-
ticular, the same principle forms the basis of the self-clocking
discussed in [Ja88]. Self-clocking leads to packets depart-
ing the sender in “flights” whose size is equal to the window
size. By applying a packet pair-style analysis to these flights,
we can then derive a more robust estimate of the bottleneck
bandwidth (one that allows us to relax the restriction that the
network be fully unloaded).

� media access: If the network path includes routers on
multiple-access links, then media access for those links will
introduce variable delay. For example, for a large, heavily-
loaded FDDI ring configured per Jain’s recommendations
[Ja90b], packets transmitted in asynchronous mode can suf-
fer delays on the order of 8 msec. Large, heavily-loaded
Ethernets can incur comparable delays [BMK88].

Thus, media-access delay could add a large element of noise
to the round-trip times, depending on the network configu-
ration. On the plus side, we will interpret this noise as being
due to queueing (see below); since itis due to heavy load,
this interpretation is not too far from the mark.

� receiver protocol processing: while we have no way to di-
rectly assess this delay element, we have reason to hope it is
small, since for example Clark et al. have shown that TCP
processing requires only a couple hundred machine instruc-
tions [CJRS89]. We accommodate this delay as a hopefully-
small noise element.

4

� delayed acks: while these delays can be quite large, they
are easily detectable for Berkeley-derived TCP implementa-
tions, which generate immediate acks if they can acknowl-
edge at least two TCP segments. Thus an acknowledgement
for a single segment corresponds to a delayed ack and we dis-
card the associated RTT as untrustworthy, while acks for two
or more segments reflect no additional delay when comput-
ing the RTT for the last segment acknowledged. In practice,
this approach means we can perform our time-series analysis
only for every other segment, reducing the information we
have available by half. This reduction is unfortunate but not
drastic.

� receiving process can’t keep up: if the process consuming
the data fails to do so quickly enough, it can manifest de-
lays in two different ways. If the slow-down is temporary
then, depending on the transport protocol implementation,
the receiver processing timepi may increase as the transport
endpoint delays acknowledging data.7 If the slow-down is
permanent, then the window will eventually close, which we
interpret as meaning that the receiving process is in general
the bottleneck (and hence increasing our sending window or
rate can’t gain us anything).

� sending process can’t keep up: the sending transport end-
point immediately knows if the sending process can’t keep
up (because it sees that the window allows more data to be
sent, but the data’s not ready). In this case it again makes no
sense to increase the sending window or rate.

� router processing: we hope that this delay is quite small,
since router fast paths are usually highly optimized. It is
possible, though, for very large delays to occur, for example
due to global synchronization of routing messages [FJ94].
In general such conditions are detectable since one of their
salient characteristics is their periodicity, but the intervals
are often on the order of tens of seconds, so during the life of
a single transport connection it may be difficult to tell when
some of its packets incur abnormal delay due to this effect.

� queueing: as we have accounted for all of the other sources
of delay or argued that they can usually be modeled as small
noise terms, we can interpret the unaccounted-for delay as
due to queueing. Let the estimate of queueing delay for the
ith packet beQ̂i. Since we know the estimated bottleneck
bandwidthB̂, if we assumed that the bulk of the queueing
delay occurs at the bottleneck link, we can assessŜi, the
estimated queue size encountered by packeti, as:

Ŝi =

Q̂iB̂

b
packets:

An important point here, though, is that if the bottleneck
server suffers frompersistentqueueing (i.e., its output queue
never empties), then our estimated minimum RTT (first item
above) will be too high, which will result in underestimat-
ing Q̂i.

Thus we claim that from the time seriesfRTTig we can estimate
all the quantities necessary to characterize the network’s dynamic
state.

7This is the case with Berkeley-derived TCP implementations, which
delay acknowledging data until the receiving process has consumed two
segments worth of queued data [WS94].

5 Ack Compression: Corrupted Time
Structure

The techniques given in the previous section for estimating the net-
work’s state rely heavily on the assumption that the spacing of ac-
knowledgement arrivals reflects the spacing of data packet arrivals
seen by the receiver. That is, early in our analysis we made the
assumption thatai is constant. The reason to believeai might
be constant is because acks are sent already spaced out to reflect
the bottleneck bandwidth (the “self-clocking” effect), so only large
perturbations will significantly alter their spacing.

It is unlikely that acks will become more widely spaced as they
traverse the network, as this requires a large intervening burst of
traffic between adjacent acks. A more serious possibility, however,
is that the spacing between a window’s worth of acknowledgements
(or some subset) might become condensed. This can happen if two
adjacent acks each have to wait in the same router’s queue and little
or no intervening traffic arrives between them.

Ack compression was predicted from theory and simulation by
Zhang, Shenker and Clark [ZSC91], and subsequently measured
in the Internet by Mogul [Mo92]. Mogul detected ack compres-
sion as follows. First, consider two acknowledgements,A1 andA2,
which differ in arrival time by a quantity�t, and in the number of
bytes they acknowledge by�b. Define the bandwidth associated
with the two acks asB = �b=�t. ComputeB̄, the median over all
consecutive acknowledgements. Next, group acknowledgements
into “ack windows” of a specified size and compute the same band-
width figure between the first and last acks in the window. If this
bandwidth exceeds̄Bby a specified ratio, then mark the window as
compressed.

Using this definition, Mogul’s analysis of the ack compression
events found that compression was correlated with packet loss but
considerably more rare. His study was limited, however, to a single
5-hour traffic trace.

We propose using a different definition of ack compression, one
which explicitly preserves the notion of corrupted time structure.
If for a given flight of data packets the bandwidth of the acks ex-
ceeds the original transmission bandwidth, then we consider those
acks compressed. This definition has a significant advantage over
Mogul’s: instead of requiring a threshold based on the connection’s
entire past behavior plus a somewhat arbitrary cutoff ratio, we can
detect ack compression using just the information associated with
the current flight of packets, which we need anyway in order to
construct and interpret thefRTTig time series.

If ack compression proves rare, then detecting it remains a minor
problem. If, however, it proves relatively common, then its impact
on our studies depends on whether the compression events are large
(gross compression, or sustained during much of a connection’s life-
time) or small. If large, then ack compression poses a serious prob-
lem for the rest of our studies, and we will need to devise schemes
to circumvent the problem. For example, we could compensate for
ack compression by modifying receivers to timestamp data packets
upon arrival and include these times in the corresponding acknowl-
edgements; or, we could shift the information-gathering from the
sender to the receiver, which could then control the sender either by
modifying the offered receive window or by controlling the pace at
which it issues acknowledgements.

In any case, characterizing the qualities of ack compression in
the Internet is one of our top priorities, to be addressed in our first
proposed experiment.

5

6 Exp. #1: Characterizing Internet
Dynamics

The goal of our first experiment is to test the viability of our end-
point information-gathering techniques by using them for a large-
scale study to characterize the dynamics of the Internet. Several
similar studies have been made before, most characterizing the In-
ternet on time scales larger than those necessary for today’s con-
nections. Kleinrock studied many different aspects of the the early
ARPANET’s behavior, emphasizing time scales ranging from hours
to days [Kl76]. Mills conducted a series of “ping” experiments to
evaluate the effectiveness of the TCP retransmission-timeout al-
gorithm for traffic to a large number of ARPANET sites [Mi83].
Heimlich [He90] and Claffy et al. [CPB93a] characterized Internet
backbone traffic, though not on the scale of individual connections.

More recently, Bolot conducted an intriguing experiment similar
in many regards to what we propose [Bo93]. He used as probes
UDP packets sent at fixed intervals and echoed by remote Internet
sites. He then analyzed the variation of the correspondingfRTTig
time series in order to assess bottleneck bandwidth and correlations
between packet losses/delays as he varied the probe interval. He
found that probe packet losses were only weakly correlated, pro-
vided that the interval between probes was large enough that the
probe packet itself was not adding to queueing.

Claffy et al. conducted a similar study using ICMP echo request
packets [CPB93b]. Their main goal, though, was to demonstrate
that latency in one direction along a path often differs from that
along the return direction.

The first step of our experiment is to gather as many participat-
ing Internet sites as possible, which we plan to do by appealing
to fellow networking researchers (a number of whom have already
indicated interest). A site can participate in two ways: by giving
permission for us to send packets to the TCPdiscard port of one
of the site’s computers, or by allowing us to originate TCP probes
from the site and trace them using a packet-capture tool such as
tcpdump. The first level of participation involves no administrative
work on the part of the site, and we anticipate that recruiting such
sites will prove very easy. The other level of participation requires
some administrative effort, but from our discussions with fellow
researchers we believe we will be able to find enough participants
at this level to make our experiment viable.

The measurement part of the experiment consists of picking (at
Poisson intervals) a pair of hosts from our collection, between which
we then conduct a series of probes. We first use thetraceroutefa-
cility to identify the path between the sender and the receiver. After
waiting a small (Poisson) time, we then establish a TCP connection
from the sender to the receiver’sdiscard port, send a number of
packets (100-500 KB), and trace the time structure of the packets
and their acknowledgements by running a packet-capture tool situ-
ated as close as possible to the sender. Ideally, we will also run a
packet-capture tool at the receiver. When the transfer is complete,
we usetracerouteagain to detect whether the route changed during
the transfer. We repeat these experiments as many times as pos-
sible, so in the subsequent analysis we will have enough data to
estimate frequencies of rare events, stability of measurements over
time, variability of measurements across network paths, and noise
distributions.

The key differences between our approach and Bolot’s are the
use of TCP packet streams rather than regularly and more widely
spaced UDP packets, giving us finer time resolution at a cost of

more complicated dynamics due to contributing to network load;
our long intervals between probing periods, instead of continuously
sending probes, which is necessary to avoid loading the network
unduly; and the use of many Internet sites, so we can make “large
number” arguments concerning the generality of our results.

We plan to analyze the resulting data to characterize a number of
properties of the Internet:

� packet loss: What sort ofpatterns do we find in packet losses?
Periodic losses may indicate global synchronization [FJ94],
which can often be fixed by injecting randomness into the
synchronized system. Correlated losses affect congestion
control strategies, and are also particularly relevant to trans-
mitting audio [Bo93].

� ack compression: How prevalent is it? Once it occurs, how
long does it continue? Is the method proposed in Section 5
adequate for detecting it?

We can answer these questions by tracing probe streams at
both the sender and the receiver, which allows us to deter-
mine one-way latencies and thus the fidelity with which the
acknowledgements preserve the timing of data packet ar-
rivals at the receiver. That is, by tracing at both ends we can
evaluate the soundness of the assumption made in Section 4
that the acknowledgement latencyai is well-approximated
as constant.

� queue sizes: How quickly do they vary? How large do they
get? Is the variation consistent with self-similar models of
wide-area traffic?

� bottleneck bandwidth: Do we consistently observe the same
bottleneck bandwidth for the same path? How often do dif-
ferent paths that share some common elements also share the
same bottleneck?

� quiescence: How often is a given path unloaded? Can we
reliably detect quiescence?

� onset of congestion: Can we predict when congestion is
building up? Can we predict incipient packet loss? (For
example, Fowler and Leland found that for local-area traffic
a crescendo of queueing spikes often preceded packet loss
[FL91].)

� contribution to queueing: Can we accurately assess our own
impact on queueing along the network path?

� frequency of routing changes: Most adaptive algorithms rely
on the assumption that Internet routes change only rarely.
Over what time scales do we see changes? How long do
they persist?

An important issue in trying to answer these questions by tracing
traffic at an endpoint is how to calibrate our measurement method-
ology so we have confidence in its correctness. Two mechanisms
are available to us. The first is to use simulation: a second party
sets up a multi-source simulation of wide-area traffic and gives us
a trace of packet send times and acknowledgement receive times
as seen at one of the endpoints. We then attempt to infer the inter-
nal characteristics of the network and compare our estimates with
the network state as recorded by the simulator. The other calibra-
tion mechanism is to occasionally introduce cross-traffic of known
characteristics (such as anotherdiscard connection, but to and
from different hosts) and testing whether we can deduce its presence

6

based on differences between traces when the traffic is present and
when it is absent.

This experiment is the most fundamental of the three we pro-
pose, and the other two might be substantially modified based on
this experiment’s results. It is possible that this experiment will
reveal that assessing the network’s state by tracing at an endpoint
simply isn’t viable due to excessive noise. If so, then that failure
will provide the basis for another line of research, namely how the
network can either provide more explicit information to endpoints,
or adapt internally if it can’t rely on endpoints to adapt intelligently.

7 Exp. #2: Bandwidth Discovery

Our discussion of the remaining two experiments is necessarily
more brief, since their exact form will depend heavily on the re-
sults of the first experiment. We outline them in this and the next
section, pointing out where they rely on findings from Exp. #1.

While the use of adaptive windows (or rates) in today’s transport
protocols is often with an eye to managing congestion by keeping
the window from growing too large, a related problem is how to
open up the window quickly when it is too small. We refer to this
as the “bandwidth discovery” problem. Most bandwidth discovery
schemes are based on opening the window a certain amount, ob-
serving the effect on latency and throughput compared to what is
expected, and if the network still has capacity, repeating this cycle.
The fundamental problem with this approach is that it involves sev-
eral round-trip times (one per “observing the effect”), even if the
window is opened exponentially fast, as is often the case.

Wepropose investigating a more aggressive approach.If Exp. #1
reveals that the network is often quiescent (unloaded), andif the
experiment shows that we can reliably assess the bottleneck band-
width, then a connection could in principle send a group of packets
to determine these things, and upon confirmation open its window
as far as the bottleneck bandwidth allows. If successful, then the
connection discovers and begins to utilize the available bandwidth
in a single round-trip time.

There are a number of issues that must be dealt with:

� It may turn out that while the network is generally not com-
pletely quiescent, it is often lightly loaded. If so, we need to
evaluate what fraction of the available bandwidth we should
attempt to seize given the degree of perceived load.

� A less aggressive version of this approach is to use the in-
ferred bottleneck bandwidth as a new upper bound on win-
dow size (replacing the TCP “slow-start threshold”).

� A still less aggressive approach is to use the inferred band-
width only as a ceiling: we lower the TCP slow-start thresh-
old to reflect the inferred bandwidth, if less, but we do not
raise the threshold if the inferred bandwidth is more. This
approach results in a TCP more conservative than those in
use today.

� If we introduce a jump in the window size then we will lack
corresponding acknowledgement packets to clock out the
newly-liberated data packets. Thus we may need to intro-
duce additional timers in order toclock out packets at asteady
pace. Doing so could gain the benefits of both window pro-
tocols and rate-controlled protocols: steady traffic but with
automatic scaling back if the network becomes loaded and
acknowledgements are delayed.

� For such an algorithm to work in the actual Internet, we need
to show that TCP’s using the algorithm do not unfairly starve
out TCP’s without it, and that if all TCP’s used the algorithm,
the network would remain stable.

We could evaluate the effectiveness of our bandwidth discov-
ery algorithm using the same experimental framework as before.
At Poisson intervals we would establish TCP connections between
different pairs of sources and receivers. Some of the sources would
run the modified TCP and others the unmodified (control) TCP. We
would then evaluate the throughput achieved by each type of TCP
vs. the losses it incurred vs. its contribution to queueing. We would
hope to find that the modified TCP increases throughput without
additional loss or queueing.

8 Exp. #3: Utilizing Past Knowledge
We argued previously that as bandwidth-delay products increase,
connections have fewer and fewer round-trip times over which to
adapt to the current network conditions. In particular, small con-
nections (which are very common) will eventually haveno round-
trip times available for adapting unless they are willing to incur
otherwise unnecessary delays. One approach for providing such
connections with the information they need to appropriately pace
their transmission is to attempt to incorporate information gained
by previous connections.

A simple example would be that each time a host begins a new
connection, it checks to see the bottleneck bandwidth measured
most recently and simply uses that. Thus, the TCP uses the band-
width discovery algorithm evaluated by Exp. #2, but the bandwidth
was actually discovered by an earlierconnectionrather than earlier
packets of the current connection. As the new connection’s ac-
knowledgements arrive, the host applies the bandwidth discovery
algorithm to find out what bandwidth itshouldhave used, and that
becomes the new remembered bottleneck bandwidth.8

Using past information raises a number of issues:

� The key question is how accurately do past measurements
predict current conditions. This question will be answered
in part by Exp. #1, which will characterize the stability over
time of information such as bottleneck bandwidth and degree
of network load.

� In general one would expect that information becomes less
reliable the older it is. Can we associate a level of reliabil-
ity with information based on its age so we can still make
(appropriately cautious) use of it?

� When a new connection terminates, how do we incorporate
its measurements with those we already have?

� To what degree can we use information acquired for con-
nections to destinationsdifferentfrom the one we now wish
to send to? Such information might still apply to our new
connection if the two connections shared a sufficient portion
of the network path. Exp. #1 will provide the data necessary
for beginning to investigate this question.

We evaluate the effectiveness of using past knowledge with the
same framework as for Exp. #2: we compare the throughput, loss,

8Modern TCP implementations already do this to a limited degree: the
Net/3 TCP code keeps a per-route cache of route characteristics such as RTT,
variance of RTT, and slow-start threshold [WS94].

7

and queueing characteristics of TCP’s using different information-
synthesis algorithms with those of control TCP’s that do not syn-
thesize any past information.

9 Summary

Since wide-area networks are increasing in speed and carrying ca-
pacity, and since network traffic varies enormously over time and
from site to site, it is increasingly important that network connec-
tions adapt as best as they can to current network conditions. Adapt-
ing to changing conditions requires information about the network’s
dynamics: available capacity, degree of queueing, and impending
congestion. We argue that by judiciously examining the time struc-
ture of the acknowledgement echoes received for previously trans-
mitted data packets, a network endpoint can estimate to a large de-
gree the conditions the data packets must have encountered during
their trip through the network. We point out that the main impedi-
ment to such an endpoint-oriented approach is the phenomenon of
“ack compression”, in which the time structure of the acknowledge-
ment echoes is destroyed due to heavy queueing on the return path.
To deal with this potential problem, we suggest a new technique
for identifying ack compression, as well as alternatives should the
problem prove endemic to the Internet.

We then propose a series of three experiments to explore the
quality of information an endpoint can gather concerning network
conditions. In the first experiment, we use streams of TCP packets
between a large number of Internet sites as probes of the Internet’s
state. We can then analyze traces of these streams to characterize
the Internet’s dynamics and to assess how accurate our information-
gathering techniques prove in practice. We include in our experi-
ment methodology two mechanisms for calibrating the accuracy of
our results.

Our second experiment applies gathered information regarding
network quiescence and available bandwidth to the “bandwidth dis-
covery” problem. We propose a novel solution to this problem, in
which if the network appears quiescent we seize the available band-
width all at once. This approach has a number of hazards associated
with it, and our experiment methodology includes ways of assessing
these hazards as well as the general effectiveness of the discovery
algorithm.

Ourfinal experiment derives from the observation that asnetwork
speeds increase, information derived during the current connection
becomes harder and harder to use because connections become in-
creasingly short-lived. We therefore propose investigating the de-
gree to which information learned from previous connections can
be incorporated into new connections, using the same framework
as in the previous two experiments.

In summary, we believe the development of sound information-
gathering techniques will make a vital contribution to the successful
operation of tomorrow’s Internet.

10 Acknowledgments

This proposal benefited greatly from discussions with Domenico
Ferrari, Sally Floyd, Van Jacobson, and Steve McCanne. In partic-
ular, the illuminating metaphor of acks as “RADAR echoes”, the
general argument that endpoints can discover a great deal about the
network’sstate, and the pressing need for devising ways for network

connections to adapt based on the performance of past connections,
all came from discussions with Van.

I would also like to thank the members of my qualifying commit-
tee, Tom Anderson, John Rice, and Pravin Varaiya, for their helpful
comments and encouragement.

References

[BD92] Y. Baguette and A. Danthine, “Comparison of TP4, TCP
and XTP, Part 2: Data Transfer Mechanisms”,European
Transactionson Telecommunicationsand related technolo-
gies, 3(6), pp. 625-635, Nov-Dec 1992.

[BMK88] D. Boggs, J. Mogul, and C. Kent, “Measured Capacity
of an Ethernet: Myths and Reality”,Proceedings of SIG-
COMM ’88, pp. 222-234, August 1988.

[Bo93] J-C. Bolot, “End-to-End Packet Delay and Loss Behavior
in the Internet”,Proceedings of SIGCOMM ’93, pp. 289-
298, September 1993.

[BOP94] L. Brakmo, S. O’Malley, and L. Peterson, “TCP Ve-
gas: New Techniques for Congestion Detection and Avoid-
ance”,Proceedings of SIGCOMM ’94, pp. 24-35, Septem-
ber 1994.

[CW89] D. Cheriton and C. Williamson, “VMTP as the Transport
Layer for High-Performance Distributed Systems”,IEEE
Communications, pp. 37-44, June 1989.

[CPB93a] K. Claffy, G. Polyzos, and H-W. Braun, “Traffic Char-
acteristics of the T1 NSFNET Backbone”,Proceedings of
INFOCOM ’93, San Francisco, March, 1993.

[CPB93b] K. Claffy, G. Polyzos, and H-W. Braun, “Measurement
Considerations for Assessing Unidirectional Latencies”,
Internetworking: Research and Experience, 4(3), Septem-
ber 1993.

[CBP94] K. Claffy, H-W. Braun and G. Polyzos, “Tracking Long-
Term Growth of the NSFNET”,Communications of the
ACM, 37(8), pp. 34-45, August 1994.

[CJRS89] D. Clark, V. Jacobson, J. Romkey, and H. Salwen, “An
Analysis of TCP Processing Overhead”,IEEE Communi-
cations, pp. 23-29, June 1989.

[CLZ87] D. Clark, M. Lambert, and L. Zhang, “NETBLT: A
High Throughput Transport Protocol”,Proceedings of
SIGCOMM ’87, pp. 353-359, 1987.

[Cl88] D. Clark, “The Design Philosophy of the DARPA Internet
Protocols”,Proceedings of SIGCOMM ’88, pp. 106-114,
August 1988.

[DJCME92] P. Danzig, S. Jamin, R. C´aceres, D. Mitzel, and D.
Estrin, “An Empirical Workload Model for Driving Wide-
area TCP/IP Network Simulations”,Internetworking: Re-
search and Experience, 3(1), pp. 1-26, 1992.

[DKS90] A. Demers, S. Keshav, and S. Shenker, “Analysis and
Simulation of a Fair Queueing Algorithm”,Internetwork-
ing: Research and Experience, 1(1), pp. 3-26, Septem-
ber 1990.

[DDKMRW90] W. Doeringer et al., “A Survey of Light-Weight
Transport Protocols for High-Speed Networks”,IEEE
Transactions on Communications, 38(11), pp. 2025-2039,
November 1990.

8

[FJ93] S. Floyd and V. Jacobson, “Random Early Detection Gate-
ways for Congestion Avoidance”,IEEE/ACM Transac-
tions on Networking, 1(4), pp. 397-413, August 1993.

[FJ94] S. Floyd and V. Jacobson, “The Synchronization of Peri-
odic Routing Messages,”IEEE/ACM Transactions on Net-
working, 2(2), pp. 122-136, April 1994.

[FL91] H. Fowler and W. Leland, “Local Area Network Traffic
Characteristics, with Implications for Broadband Network
Congestion Management”,IEEE JSAC, 9(7), pp. 1139-
1149, September 1991.

[GK80] M. Gerla and L. Kleinrock, “Flow Control: A Compar-
ative Survey”, IEEE Transactions on Communications,
28(4), pp. 553-574, April 1980.

[He90] S. Heimlich, “Traffic Characterization of the NSFNET
National Backbone”, Proceedings of the 1990 Winter
USENIX Conference, Washington, D.C.

[Ja88] V. Jacobson, “Congestion Avoidance and Control”,Pro-
ceedings of SIGCOMM ’88, pp. 314-329, August 1988.

[Ja81] J. Jaffe, “Bottleneck Flow Control”,IEEE Transactions on
Communications, 29(7), pp. 954-962, July 1981.

[Ja89] R. Jain, “A Delay-Based Approach for Congestion Avoid-
ance in Interconnected Heterogeneous Computer Net-
works”, Computer Communication Review, 19(5), pp. 56-
71, October 1989.

[Ja90a] R. Jain, “Myths About Congestion Management in High-
Speed Networks”, DEC-TR-726, Digital Equipment Cor-
poration, October 1990.

[Ja90b] R. Jain, “Performance Analysis of FDDI Token Ring Net-
works: Effect of Parameters and Guidelines for Setting
TTRT”, Proceedings of SIGCOMM ’90, pp. 264-275,
September 1990.

[Ke91] S. Keshav, “A Control-Theoretic Approach to Flow Con-
trol”, Proceedings of SIGCOMM ’91, pp. 3-15, Septem-
ber 1991.

[Kl76] L. Kleinrock, “Queueing Systems, Volume II: Computer
Applications”, John Wiley & Sons, 1976.

[LTWW94] W. Leland, M. Taqqu, W. Willinger, and D. Wilson,
“On the Self-Similar Nature of Ethernet Traffic (Extended
Version)”, IEEE/ACM Transactions on Networking, 2(1),
pp. 1-15, February 1994.

[Mi83] D. Mills, “Internet Delay Experiments”, RFC 889, Net-
work Information Center, SRI International, Menlo Park,
CA, 1983.

[MS90] D. Mitra and J. Seery, “Dynamic Adaptive Windows for
High Speed Data Networks: Theory and Simulations (Ex-
tended Abstract)”,Proceedings of SIGCOMM ’90, pp. 30-
37, September 1990.

[Mo92] J. Mogul, “Observing TCP Dynamics in Real Networks”,
Proceedingsof SIGCOMM ’92, pp. 305-317, August 1992.

[Na84] J. Nagle, “Congestion Control in IP/TCP Internetworks”,
RFC 896, Network Information Center, SRI International,
Menlo Park, CA, 1984.

[NRS90] A. Netravali, W. Roome, K. Sabnani, “Design and Im-
plementation of a High-Speed Transport Protocol”,IEEE
Transactions on Communications, 38(11), pp. 2010-2024,
November 1990.

[Pa94a] V. Paxson, “Empirically-Derived Analytic Models of
Wide-Area TCP Connections”, to appear inIEEE/ACM
Transactions on Networking, 2(4), August 1994.

[Pa94b] V. Paxson, “Growth Trends in Wide-Area TCP Connec-
tions”, IEEE Network, 8(4), pp. 8-17, July/August 1994.

[PF94] V. Paxson and S. Floyd, “Wide-Area Traffic: The Fail-
ure of Poisson Modeling”,Proceedings of SIGCOMM ’94,
pp. 257-268, September 1994.

[PS93] T. La Porta and M. Schwartz, “The MultiStream Proto-
col: A Highly Flexible High-Speed Transport Protocol”,
IEEE JSAC, 11(4), pp. 519-530, May 1993.

[RJ90] K. Ramakrishnan and R. Jain, “A Binary Feedback
Scheme for Congestion Avoidance in Computer Net-
works,” ACM Transactions on Computer Systems, 8(2),
pp. 158-181, May 1990.

[SA91] D. Sanghi and A. Agrawala, “DTP: An Efficient Transport
Protocol”, UMIACS-TR-91-133, CS-TR 2767, Depart-
ment of Computer Science and Institute for Advanced
Computer Studies, University of Maryland, October 1991.

[St94] W. Stevens,TCP/IP Illustrated, Volume 1: The Protocols,
Addison-Wesley, 1994.

[WC91] Z. Wang and J. Crowcroft, “A New Congestion Control
Scheme: Slow Start and Search (Tri-S)”,Computer Com-
munication Review, 21(1), pp. 32-43, January 1991.

[WC92] Z. Wang and J. Crowcroft, “Eliminating Periodic Packet
Losses in the 4.3-Tahoe BSD TCP Congestion Control Al-
gorithm”,Computer Communication Review, 22(2), pp. 9-
16, April 1992.

[WM87] R. Watson and S. Mamrak, “Gaining Efficiency in Trans-
port Services by Appropriate Design and Implementation
Choices”,ACM Transactions on Computer Systems, 5(2),
pp. 97-120, May 1987.

[WS94] G. Wright and W. Stevens,TCP/IP Illustrated, Volume 2:
The Implementation, Addison-Wesley, forthcoming.

[ZSC91] L. Zhang, S. Shenker, and D. Clark, “Observations on
the Dynamics of a Congestion Control Algorithm: The Ef-
fects of Two-Way Traffic”,Proceedings of SIGCOMM ’91,
pp. 133-147, September 1991.

9

