Chapter 5

The Raw Routing Data

In this chapter we discuss the sites that participated in our routing experiments, the duration of the experiments, and the preliminary reduction of the raw data we gathered.

5.1 Participating sites

The first routing experiment began the evening of Tuesday, November 8, 1994, and lasted until the morning of Saturday, December 24. During this time, we attempted 6,991 traceroutes between 27 sites. We refer to this collection of measurements as \mathcal{R}_{1} (dataset \#1). We will often refer to a single such measurement as a "traceroute."

The second experiment began the morning of Friday, November 3, 1995, and lasted until the afternoon of Thursday, December 21. It included 37,097 attempted traceroutes between 33 sites. We refer to this collection of measurements as \mathcal{R}_{2}. Details of the measurements and the sampling intervals are discussed in $\S 4$.1. Both \mathcal{R}_{1} and \mathcal{R}_{2} are publicly available from the Internet Traffic Archive, at:
http://www.acm.org/sigcomm/ITA
under the name NPD-Routes. ${ }^{1}$
Table I lists the sites participating in \mathcal{R}_{1}, giving the abbreviation we will use to refer to each site, the site's Internet domain, the number of days it participated in the study, a brief description of the site, and its location. These sites also participated in \mathcal{R}_{2}, except for batman, korea, usc, and xor. Table II lists the additional sites participating in \mathcal{R}_{2}. In \mathcal{R}_{2}, all sites participated at least a month, except for ukc, which participated for 23 days, and 13 of the sites participated for the maximum of 48 days.

The sites include educational institutes, research labs, network service providers, and commercial companies, in 9 countries. Figures 5.1 and 5.2 show the geographic locations of the North American and European sites.

[^0]| Name | Domain | Days | Description | Location |
| :--- | :--- | ---: | :--- | :--- |
| austr | mu.oz.au | 24 | University of Melbourne | Melbourne, Australia |
| batman | batman.net | 11 | Experimental ATM network
 at National Center for At-
 mospheric Research | Boulder, CO |
| bnl | bnl.gov | 37 | Brookhaven National Lab | Brookhaven, NY |
| bsdi | bsdi.com | 9 | Berkeley Software Design,
 Inc. | Colorado Springs, CO |
| connix | connix.com | 22 | Caravela Software | Middlefield, CT |
| harv | harvard.edu | 9 | Harvard University | Cambridge, MA |
| inria | inria.fr | 9 | INRIA | Sophia, France |
| korea | postech.ac.kr | 36 | Pohang Institute of Science
 and Technology | Pohang, South Korea |
| lbl
 lbli | lbl.gov
 lbl.gov | 45 | Lawrence Berkeley Lab
 LBL home computer con-
 nected via ISDN | Berkeley, CA
 Berkeley, CA |
| mit | mit.edu | 21 | Massachusetts Institute of
 Technology | Cambridge, MA |
| ncar | ucar.edu | 22 | National Center for Atmo-
 spheric Research | Boulder, CO |
| nrao | cv.nrao.edu | 44 | National Radio Astronomy
 Observatory | Charlottesville, VA |
| oce | oce.nl | 19 | Oce-van der Grinten | Venlo, The Netherlands |
| pubnix | va.pubnix.com | 11 | Pix Technologies Corp. | Fairfax, VA |
| sdsc | sdsc.edu | 24 | San Diego Supercomputer
 Center | San Diego, CA |
| sri | sri.com | 9 | SRI International | Menlo Park, CA |
| ucl | ucl.ac.uk | 24 | University College | London, U.K. |
| ucol | colorado.edu | 45 | University of Colorado | Boulder, CO |
| ukc | ukc.ac.uk | 24 | University of Kent | Canterbury, U.K. |
| umann | uni-mannheim.de | 19 | University of Mannheim | Mannheim, Germany |
| umont | umontreal.ca | 15 | University of Montreal | Montreal, Canada |
| unij | kun.nl | 9 | University of Nijmegen | Nijmegen,
 The Netherlands |
| usc | usc.edu | University of Southern
 California | Los Angeles, CA | |
| ustutt | uni-stuttgart.de | 16 | University of Stuttgart | Stuttgart, Germany |
| wustl | wustl.edu | 33 | Washington University | St. Louis, MO |
| xor | xor.com | 30 | XOR Network Engineering | East Boulder, CO |
| | | | | |

Table I: Sites participating in first experiment $\left(\mathcal{R}_{1}\right)$

Name	Domain	Description	Location
adv	advanced.org	Advanced Network \& Services	Armonk, New York
austr2	newcastle.edu.au	University of Newcastle	Newcastle, Australia
mid	mid.net	MIDnet	Lincoln, Nebraska
near	near.net	NEARnet	Cambridge, Massachusetts
panix	nyc.access.net	Public Access Networks Corporation	New York, New York
rain	rain.net	RAINet, Inc.	Portland, Oregon
sandia	ca.sandia.gov	Sandia National Laboratories	Livermore, California
sintef1 sintef2	sintef.no sintef.no	University of Trondheim University of Trondheim	Trondheim, Norway Trondheim, Norway
ucla	ucla.edu	University of California	Los Angeles, California

Table II: Additional sites participating in second experiment $\left(\mathcal{R}_{2}\right)$

Figure 5.1: Sites participating in routing study, North America and Asia

Figure 5.2: Sites participating in routing study, Europe

	Experiment 1		Experiment 2	
	$\#$	$\%$	$\#$	$\%$
Unable to contact daemon	495	7.1%	1,872	5.0%
Daemon configuration error	25	0.4%	15	0.04%
Host lookup failure	12	0.2%	101	0.3%
Total failures	532	7.6%	1,988	5.4%
Total successes	6,459	92.4%	35,109	94.6%
Total	6,991	100.0%	37,097	100.0%

Table III: Summary of routing experiment difficulties

5.2 Measurement breakdown

In the two experiments, between $5-8 \%$ of the traceroutes failed outright (i.e., we were unable to contact the remote npd, execute traceroute and retrieve its output). As shown in Table III, almost all of the failures were due to an inability of the npd_control process to contact the remote daemon. Some of these were failures involving lbli; that site, due to its ISDN link frequently being down (§ 6.7.4), was often unreachable. But for most of the failures we do not a priori know whether they represent the remote host being down or an Internet connectivity failure. It is important to note that, if the latter was frequently the case, then to some degree the assumptions behind PASTA are invalid, since an agent at the remote site with knowledge of current connectivity problems could reliably predict no sampling would occur in the near future (§4.3).

For our analysis, the effect of these failures to contact the remote daemon (npd) will lead to a bias towards underestimating Internet connectivity failures, because sometimes the failure to contact the remote daemon will result in losing an opportunity for a traceroute experiment to reveal the lack of connectivity between that site and another remote site that shares the same path as used between npd_control and the daemon.

When taking the \mathcal{R}_{2} measurements, however, we somewhat corrected for this underestimation by pairing each measurement of the path $A \Rightarrow B$ with a measurement of the path $B \Rightarrow A .^{2}$ If npd_control was unable to reach one of either A or B, it still attempted to contact the other to measure the reverse route. In those circumstances where it was able to measure the reverse route, it still had an opportunity to observe the routing fault, if present in both directions.
npd_control was unable to reach one of either A or $B 1,872$ times. It was unable to contact the other host of the measurement pair, either, in only 5% of these instances. Thus, for the most part, the \mathcal{R}_{2} measurements do not suffer from bias in observing bidirectional routing faults.

We could further reduce this measurement problem by introducing a "batch" design to npd, where the daemon would accept a list of measurements it should make at future points in time, and would email back the results when they were complete. We did not adopt this approach because one of our goals in the design of npd was to keep it simple enough that sites volunteering to run it could with reasonable ease inspect the code to see what they were running.

[^1]

Figure 5.3: Number of measurements made for each Internet path, \mathcal{R}_{1} dataset

Figure 5.4: Number of measurements made for each Internet path, \mathcal{R}_{2} dataset

Site	Best Guess
wvnet-wtn9-c1.sura.net	Charleston, WV
128.167 .205 .2	Charlottesville, VA
reynolds-ctv1-c1.sura.net	Charlottesville, VA
uva-ctv-c3mb.sura.net	Charlottesville, VA
38.2 .213 .16	New York, NY
core.net218.psi.net	New York, NY
leaf.net218.psi.net	New York, NY
38.1 .2 .14	Washington, D.C.
core.net222.psi.net	Washington, D.C.
137.209 .1 .1	College Park, MD
192.80 .6 .2	College Park, MD
198.25 .80 .1	College Park, MD
199.54 .78 .1	College Park, MD

Table IV: Uncertain router sites

Figures 5.3 and 5.4 summarize the number of traceroute measurements between each pair of sites for each of the experiments.

5.3 Geography

To understand the Internet topology traversed by the experiment, and how each router relates to others, we undertook to identify the geographic locations of the 751 routers (distinct IP addresses) involved in \mathcal{R}_{1} and the 1,095 routers in \mathcal{R}_{2}. The identification involved several steps:

1. Routers with an Internet hostname in the same domain as one of the participating sites (e.g., colorado. edu) were assumed to be located at that site.
2. Routers with a single geographic location in their name (e.g., dallas1.tx.alter.net) were assumed to reside at that location.
3. For still-unidentified routers, we sent email to the NIC "whois" contacts [HSF85] for the router's domain, asking if they could identify the router's location or the naming scheme used for routers in that domain. The various contacts proved remarkably helpful, willing to go to considerable efforts to aid in locating the sites. We also benefited from various "whois" servers, especially the European server whois.ripe.net and its corresponding WAIS server, and topology maps.
4. If any still-unidentified routers only occurred as a hop between two identified sites at the same location, we assumed the router was sited at that location too. For example, if we observed a partial network path of $A \rightarrow B \rightarrow C$, with A and C both sited in San Diego, then we assumed that B was sited in San Diego too.
5. For the remainder, we made a "best guess," based on the locations of upstream and downstream routers. Table IV summarizes the sites for which we had to guess.

Thus, of the 1,531 routers traversed during the study, we were able to identify the location of all but 13 .

After locating the routers, we reduced the topology traversed by the experiment to connections between cities, listed in Table V. Having developed a geographic database for the various routers, we then constructed maps showing the links traversed in the study. ${ }^{3}$ Figure 5.5 shows these links from a North American perspective, where sites in Hawaii, Korea, and Australia are shown west of California, and sites in Europe and Israel are shown in the Atlantic. Figure 5.6 show the links from a European perspective; here, the only links extending outside of Europe were those to sites in the U.S., which is represented as a single site west of France.

[^2]| State or Country | City |
| :--- | :--- |
| California | Anaheim, Berkeley, Bloomington, Hayward, Livermore, Los Angeles,
 NASA-AMES (Moffett Field,, Oakland, Palo Alto, Pasadena, Sacra-
 mento, San Diego, San Francisco, San Jose, Santa Clara, Stockton |
| Colorado | Boulder, Colorado Springs, Denver, East Boulder |
| Connecticut | Hartford, Middlefield |
| Florida | Miami |
| Georgia | Atlanta |
| Hawaii | Honolulu |
| Illinois | Batavia, Chicago, Willow Springs |
| Maryland | College Park |
| Massachusetts | Boston, Cambridge, Waltham |
| Michigan | Detroit |
| Missouri | Kansas City, St. Louis |
| Nebraska | Lincoln |
| New Jersey | Pennsauken, Princeton, West Orange |
| New Mexico | Albuquerque, Los Alamos |
| New York | Albany, Armonk, Brookhaven, Buffalo, Deer Park, Ithaca, New York,
 Syracuse |
| North Carolina | Greensboro, Raleigh |
| Ohio | Cleveland, North Royalton |
| Oregon | Portland |
| South Carolina | Greenville |
| Texas | Austin, Dallas, Fort Worth, Houston |
| Virginia | Charlottesville, Fairfax, Falls Church, Newport News, Norfolk, Vienna |
| Washington, D.C. | Kent, Seattle |
| Washington | Charleston |
| West Virginia | Adelaide, Canberra, Melbourne, Newcastle, Sydney |
| Australia | Vienna |
| Austria | Brussels |
| Belgium | Vancouver, Montreal, Toronto |
| Canada | Cambridge, Canterbury, London, Manchester |
| England | Helsinki |
| Finland | Lyon, Marseilles, Montpellier, Nice, Paris, Poitiers, Sophia, Toulouse |
| France | Aachen, Duesseldorf, Heidelberg, Karlsruhe, Mannheim, Munich,
 Stuttgart |
| Germany | Milan |
| Italy | Jerusalem, Rehovot |
| Israel | Pohang, Seoou |
| Korea | Amersfoort, Amsterdam, Den Bosch, Eindhoven, Nijmegen, Venlo,
 Utrecht |
| Norwarlands | Oslo, Trondheim |
| Spain | Madrid |
| Sweden | Stockholm |
| Switzerland | Geneva |
| | |

Table V: Router cities

Figure 5.5: Links traversed during \mathcal{R}_{1} and \mathcal{R}_{2}, North American perspective

Figure 5.6: Links traversed during \mathcal{R}_{1} and \mathcal{R}_{2}, European perspective

[^0]: ${ }^{1}$ At the time of this writing, the Archive is moving from its old location to the above URL. If the reader has any difficulty accessing the Archive, send email to vern@ee.lbl.gov.

[^1]: ${ }^{2}$ About 20% of the measurements were not paired, because they were made in conjunction with the measurements discussed in Part II.

[^2]: ${ }^{3}$ Doing so first required analyzing the traceroutes for routing pathologies (§ 6), because "fluttering" and midstream routing changes can easily introduce spurious links.

