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Chapter 7

End-to-End Routing Stability

One key property we would like to know about an end-to-end Internet route is itsstability:
do routes change often, or are they stable over time? In this section we analyze the routing measure-
ments to address this question. We begin by discussing the impact of routing stability on different
aspects of networking, to motivate our study, and summarizing the reasons why routes change. We
then present two different notions of routing stability, “prevalence” and “persistence,” and show that
they can be orthogonal (i.e., a route can be considered “stable” by one definition independently of
whether it is stable by the other definition).

It turns out that “prevalence” is quite easy to assess from our measurements, and “persis-
tence” quite difficult. Inx 7.5 we characterize the “prevalence” stability of the routes, and then in
x 7.6 we tackle the problem of assessing “persistence.”

We finish by evaluating a method fordetectingroute changes based on observing changes
in hop count (TTL). We find this method makes a decent heuristic, but generates enough “false
negatives” that it should not be trusted if accuracy is crucial.

7.1 Importance of routing stability

One of the stated goals of the Internet architecture is that large-scale routing changes (i.e.,
those involving different autonomous systems) rarely occur [Li89]:

The Inter-AS Routing scheme must provide stability of routes. It is totally unac-
ceptable for routes to vary on a frequent basis. This requirement is not meant to limit
the ability of the routing algorithm to react rapidly to major topological changes, such
as the loss of connectivity between two AS's. The need for adaptive routing does not
imply any desire for load-based routing.

This point has been argued by others as well [BE90, Tr95b]. Routing instability sets the foremost
limit on how use of BGP can scale to a very large internet, because CPU utilization required by BGP
routers increases directly in proportion to the frequency of routing changes (but not, otherwise,
in proportion to the overall size of the network) [Tr95b]. Hence, the key concern is that routing
instability can in turn lead to general network instability (i.e., loss of packet-forwarding function).

There are a number of aspects of networking affected by routing stability:
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1. Some of the most important properties of a network—latency, bandwidth, congestion levels,
packet losses—are allroute properties. If the route through the network changes, so might
some or all of these properties. Therefore, the degree to which a network's behavior ispre-
dictable is directly related to the stability of its routes. This is not to say that, even if the
route remains stable, these properties will too. Rather, routing stability isnecessarybut not
sufficientfor predictable network behavior.

One particular example affected by routing stability is thepredictive servicescheme proposed
for real-time network traffic [CSZ92]. Predictive service attempts to satisfy the performance
requirements of real-time traffic by only admitting new real-time flows if recent traffic mea-
surements suggest the network has sufficient capacity for them. If routes are unstable over
short time scales, however, then these predictions become considerably difficult to make.

2. The degree to which endpoints can benefit fromcachinginformation of previously encoun-
tered path conditions is limited by (among other factors) whether the route observed in the
past is likely to be the same as the present route.

3. New network protocols supporting “real-time” applications such as audio and visual flows
generally require establishing state in routers in order to assure that the flows receive the nec-
essary performance. Real-time flows will often be long-lived, existing for time spans on the
order of human interactions (minutes to hours) rather than computer interactions (millisec-
onds to seconds). If routing changes occur frequently, then these long-lived flows will be
prone to losing the state they have established in the routers in the network, and will suf-
fer outages or degraded service while they attempt to find alternate routes with sufficient
resources.

Some protocols use “hard state” in the routers, meaning that, if state information for a
given flow is not present in the router, then the router will not forward the flow's packets
[DB95, FBZ94]. Other protocols use “soft state” schemes in which, even if a router has no
corresponding state information for the flow, it will forward a flow's packets, though with
possibly degraded performance [ZDESZ93, BCS94, DEFJLW94]. Hard state and soft state
schemes trade off performance guarantees versus flexibility in the face of errors. Part of the
question of evaluating the flexibility gain of soft state schemes concerns the degree of route
stability. If routes do not tend to change frequently, then the soft state gain in flexibility is
minor, but, if routes change frequently, then the gain will be larger.

For an overview of the difficulties of dealing with routing changes in real-time protocols, see
[GR95]. We do not attempt here to evaluate the flexibility gain of soft state versus hard state
schemes. Indeed, the question is much more complex than stated above1. But we do attempt
to characterize the stability constants that could then be used in such an evaluation.

4. Another form of router state arises from schemes for supportingadvance reservations, in
which the network allows resources to be reserved for future use [FGV95]. If the state con-

1For example, both types of schemes often use “route pinning,” in which the route available when a flow is established
remains the route used by that flow for its lifetime. If a route is pinned, then only route changes due to thefailure of a
router used by the flow affect the flow; not those due to the discovery of improved routes (x 7.2).

Similarly, some hard state schemes have explicit recovery mechanisms for when a flow's routedoesfail ([Ba94, DB95,
GR95]), so these schemes do not necessarily stop working in the presence of route changes.



73

cerning these reservations is stored in the network's routers (a logical choice, to avoid cen-
tralized bottlenecks), then frequent route changes may lead to reservations failing because
the routers used to establish the reservations are no longer the routers relevant to the real-
time path.

5. If routes change frequently, then network measurements face difficult consistency problems.
For example, several studies of end-to-end network behavior rely on repeated measurements
of a network path made over the course of hours to days [Mi83, CPB93a, Bo93, SAGJ93,
Mu94, BCG95]. Whether these measurements all observe the same path significantly affects
the accuracy of the studies.

Similarly, distributed algorithms for analyzing the network's state also face consistency prob-
lems if routes change frequently. For example, recent theoretical work has developed “tomog-
raphy” techniques for inferring end-to-end network traffic intensities using just measurements
of aggregate traffic intensities along the network's links [Va95]. The work assumes stable
routing (an extension explores Markovian routing). If routes change frequently, then it may
prove extremely difficult to capture a consistent global snapshot of any significant portion of
the Internet for purposes of operational monitoring.

We now look briefly at why routes change, and then introduce two different notions of
routing stability, to encompass the different stability concerns discussed above.

7.2 Why routes change

There are several different reasons why a route might change:

1. If a link or routerfails, then the network must reroute traffic using that link or router.

2. If a link or routerrecovers, then the networkmayelect to route previously redirected traffic
back to using that link or router. If routes are “pinned,” however, then they will not be changed
due to recoveries.

3. If a link degradesor improves, where such notions might for example be measured by con-
gestion levels, then the network mightadaptby changing routes to account for the altered
view of the cost of the link. For example, the ARPANET routing algorithms were designed
to route around congested areas of the network. As experience with the ARPANET showed,
such adaptive routing is tricky to get right: the initial routing scheme reacted “very quickly
to good news, and very slowly to bad news” [MFR78], and the first revision of the algo-
rithm [MRR80] also exhibited oscillations under heavy load [KZ89]. Because it is difficult
to achieve stable adaptive routing, in which routes are not subject to rapid oscillation in re-
sponse to transient congestion, adaptive routing is not widely used [Mo95], and a number of
researchers argue for caution in its use [ERH92, RG95].

4. A router might cycle between different routes to the same destination in order tobalance
load. We analyzed this sort of route “flutter” inx 6.6, where we found that often its effects
are confined to a single hop in an Internet path, but sometimes the split routes fail to rejoin,
leading to drastically different path characteristics.
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We would hope to observe four different time constants associated with these four reasons,
of decreasing durations. Link failures should occur only rarely, hopefully on the time scale of days.
Link recoveries should occur significantly quicker (i.e., shortly after the link failure), on the time
scale of minutes (if a reboot or restart is all that is required) to hours (if human intervention and
repair is required). If adaptive routing is used, then changes should occur on the time scales of
congestion epochs (unfortunately not well characterized in the literature), which one presumes is on
the order of seconds to minutes; adaptive routing algorithms generallydamprapid changes, though,
to avoid oscillations, so we would expect this time constant to be more on the order of minutes.
Finally, load balancing is generally done on very small time scales (such as every other packet), on
the order of milliseconds.

7.3 Two definitions of stability

As suggested inx 7.1, there are two distinct views of routing stability. The first is: “Given
that I observed router at timet, how likely am I to observer again at timet + s?” We refer to
this notion asprevalence. A route's prevalence directly affects the first two motivations discussed
above, namely predictability of service, and our ability to learn from past conditions. In general, the
degree of route prevalence will depend ons. For larges, however, we would expect the observation
at timet+ s to be (nearly) independent of the observation at timet. In this study, for simplicity we
focus on the unconditional probability of observing a route, confining our analysis tos ! 1, i.e.,
the steady-state probability of observingr again at a point far in the future. We leave the interesting
question of how prevalence evolves for different intervalss for future work.

A second view of stability is: “Given that I observed router at timet, how long before
that route is likely to have changed?” The likelihood of routes changing in the near future has
implications for the latter three motivations, namely hard and soft router state, resource reservations,
and network measurement consistency. We refer to this notion aspersistence.

Intuitively, we might expect these two notions to be coupled. Consider, for example, a
sequence of routing observations made everyT units of time. If the routes we observe are:

R1; R1; R1; R1; R1; R1; R1; R1; R1; R1; R1; R2; R1; R1; R1 : : :

then clearly routeR1 is much more prevalent than routeR2. We might also conclude that route
R1 is persistent, because we observe it so frequently; but this is not at all necessarily the case. For
example, supposeT is one day. If the mean duration ofR1 is actually 10 days, and that ofR2 is one
day, then this sequence of observations is quite plausible, and we would be correct in concluding
thatR1 is persistent and prevalent. Furthermore, depending on our concern, we might also deem
thatR2 is persistent, since on average it lasts for a full day (if its lifetime were much shorter, then we
would have been unlikely to observe it from measurements made only once a day). If we consider
a route that last for more than a few hours as persistent, then from the above observations we could
argue thatR2 is persistent but not prevalent.

But suppose instead that the mean duration ofR1 is 10 seconds and the mean duration of
R2 is 1 second, and that alterations between them occur as a semi-Markov process,2 where state 1

2Such processes consist of a set of states. Each statei has associated with it a distribution of durations,Gi. The distri-
bution depends on the state numberi, but not on anything else. Upon entering statei, a duration is drawn independently
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of the process corresponds toR1, state 2 toR2, andP1;2 = P2;1 = 1 (i.e., whenever a change
occurs, it is a change to the other route). Then a well-known result from the theory of stochastic
processes states that the proportion of time the system spends in state 1 is equal to the mean duration
of state 1 divided by the sum of the mean durations of states 1 and 2 [Ro83]. For our example, we
have that the proportion of time spent in stateR1 is 10

11
, reflecting thatR1 is prevalent. Similarly, the

proportion of time spent in stateR2 is 1

11
. Given these proportions, the sequence of observations is

again plausible, even though each observation ofR1 is actually of a separate instance of the route.
In this case,R1 is prevalent but not persistent, andR2 is neither prevalent nor persistent. In other
words, we very likely are missing instances ofR2 between observations ofR1, and henceR1 is not
persistent.

This example shows that the notions of “prevalent” versus “persistent” stability are or-
thogonal, in the sense that the presence or absence of one does not necessarily indicate anything
about the presence or absence of the other.

7.4 Reducing the data

To begin our analysis, we first need to reduce the more than 40,000traceroutes mea-
surements inR1 andR2 to those relevant for assessing stability. Before we had gathered theR2

measurements, we performed an initial stability analysis of theR1 data. Doing so, we concluded
that the inter-measurement spacing of theR1 traceroutes , on average about one day, was too
large to allow any assessment of routing stability in terms of persistence, because of the ambiguities
discussed in the previous section. Consequently, we confine our routing stability analysis toR2,
which contains the bulk (85%) of the 40,000 measurements. 60% of these were taken with a 2-hour
inter-measurement spacing. As shown in the remainder of this chapter, this granularity is sufficient
to resolve the persistence ambiguities.

Of the 35,109R2 measurements, we began by excluding those exhibiting the patholo-
gies discussed in Chapter 6, because they reflect connectivity difficulties distinct from routing
instabilities.3 (We did not exclude “circuitous” routes, however, because, as mentioned inx 6.9,
these are not true pathologies.) Doing so eliminated 805traceroutes .

We also omittedtraceroutes for which one or more hops were completely missing (all
three of the probe packets unanswered). These measurements are inherentlyambiguous, because we
could not tell if the route was the same as that observed at other instances. This decision eliminated
another 2,595 measurements, leaving us with a total of 31,709 measurements.

We next made a preliminary assessment of the patterns of route changes by seeing which
changes occurred the most frequently. We found the pattern of changes dominated by a number of

fromGi. The process remains in statei until the duration elapses. At this point, a new statej is chosen based on a set of
probabilities fixed for statei.

3An exception is the pathology of a routing change during atraceroute . Including these pathologies, however,
can lead to overestimating the frequency of route changes. Suppose we make three route measurements of a particular
path, yielding routesA, A=B, andB, whereA=B indicates atraceroute that included a change from routeA to
routeB. If we included the second, pathological measurement, we would conclude that over the three observations two
changes occurred (A toA=B andA=B toB), whereas in reality only one change occurred (A toB).

It is possible that instead the sequence we observe isA,A=B,A, because routeB was short-lived; in this case, omitting
the pathologicaltraceroute underestimates the frequency of changes. But this becomes an issue only ifB was quite
short-lived, and we account for such routes separately, as discussed inx 7.6.1.
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Routers Notes

asd01.nl.net , amf01.nl.net These routers are located in different cities, but

provide equal bandwidth and latency to their peers

[Lin96].

icm-dc-1.icp.net ,
icm-dc-2b-s4/0-1984k.icp.net

rgnet-b1-serial2-3.seattle.mci.net ,
rainnet-inc.seattle.mci.net

rb1.rtr.unimelb.edu.au ,
rb2.rtr.unimelb.edu.au

unit-gw.unit.no ,
sintef-gw.sintef.no

Both at the University of Trondheim.

Table XI: Tightly-coupled routers

single-hop differences, at which consecutive measurements showed exactly the same path except for
a single router. Furthermore, the names of these routers often suggested that the pair were adminis-
tratively interchangeable.4 For example, many of the routing changes to theaustr site only differed
in whether the University of Melbourne border router in the route wasrb1.rtr.unimelb.edu.au

or rb2.rtr.unimelb.edu.au . Which of these two routers provides the route to theaustr host
depends on the distribution of load within other parts of the University, but the two routers are under
the same direct administration and would indeed be one machine if a single router with sufficient
capacity had been available at the time of acquisition [El96].

It seems likely that many route changes differing at just a single hop are due to shifting
traffic between two tightly coupled machines. For the stability concerns given inx 7.1, such a
change is likely to have little consequence, provided the two routers are co-located and capable of
sharing state. We decided that, if a single pair of routers with like names were responsible for more
than 200 routing transitions, then we would classify them as “tightly coupled,” and merge them
into a single router for purposes of evaluating stability. Table XI summarizes these routers. After
merging those responsible for> 200 changes, the remaining pairs were all responsible for 80 or
fewer changes. We left these as separate routers, as changes between them did not dominate the
data, and we would like to minimize assumptions about which routers are tightly coupled.

Finally, we reduced the acceptable routes to three different levels ofgranularity. First,
we considered each route as a sequence of Internet hostnames. We call thishostgranularity. We
then reduced the routes to sequences ofcities, as outlined inx 5.3. Note that a route change at host
granularity mightnot be a route change atcity granularity, though the converse always holds. The
motivation behind the distinction of host granularity vs. city granularity is to introduce a notion of
“any change” vs. “major change.” A route change at city granularity will likely have considerably
more repercussions than a change visible only at host granularity. For example, the latency of the
route will often be different. Overall, 57% of the route changes at host granularity were also route
changes at city granularity.

4Sometimes the routerswere identical. For example, IP address192.157.65.130 , which translates to
icm-paris-1-s0-1984k.icp.net , is actually also an interface onparis-ebs2.ebone.net .
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The third level of granularity wasAS path—the sequence of autonomous systems visited
by the route (x 4.4). A change atASgranularity reflects a possible change in the intermediate routing
algorithms and policies, and as such is another form of major change. Overall, 36% of the route
changes at host granularity were also changes at AS path granularity. Note that a change at AS path
granularity is not necessarily a change at city granularity, nor vice versa, though overall we found
AS path granularity coarser (i.e., comprising fewer changes) than city granularity.

7.5 Routing Prevalence

In this section we look at routing stability from the standpoint ofprevalence: how likely
we are, overall, to observe a particular route (c.f.x 7.3). We can associate with prevalence a pa-
rameter�r, the steady-state probability that a path at an arbitrary point in time uses a particular
router.

We can assess�r from our data as follows. We suppose that routing changes follow a
semi-Markov process. In this model, each route's duration has a fixed distribution (but different
routes can have different distributions), and the duration of each instance of a route is independent
of all previous route durations. Furthermore, the probability that router1 is followed by router2 is
fixed and independent of past events.

We then use the result that, for a semi-Markov process, the steady-state probability of
observing a particular state is equal to the average amount of time spent in that state [Ro83].5 Fur-
thermore, because of PASTA, our independent exponential sampling gives us an unbiased estimator
of this time average (x 4.3). Suppose we maken observations of a path andkr of them find stater
(i.e., router). Then we will estimate�r as�̂r = kr=n.

We proceed as follows. For a particular pathp (and for a given granularity), letnp be
the total number oftraceroutes measuring that path, anddp the number of distinct routes seen.
We will denote the most commonly occurring route as thedominantroute, and others assecondary
routes. Thus, there are alwaysdp � 1 secondary routes. Letkp be the number of times we observe
the dominant route. We then confine our analysis to:

�̂dom p= kp=np;

the prevalence of the dominant route.
Figure 7.1 shows the cumulative distribution of the prevalence of the dominant routes over

all of the paths in our study (i.e., all 1,054 source/destination pairs), for the three different granular-
ities. For example, at host granularity, nearly half (49%) of the paths (y-axis) were dominated by a
route with a prevalence of at least 80% (x-axis).

There is clearly a wide range, particularly for host granularity. For example, for the path
betweenpubnix andaustr , in 46 measurements we observed 9 distinct routes at host granularity,
and the dominant route was observed only 10 times, leading to�̂dom = 0:217. On the other hand,
at host granularity more than 25% of the paths exhibited only a single route (�̂dom = 1). For city
and AS path granularities, the spread in�̂dom is more narrow, as would be expected (the figure also

5This result requires that the distribution of time spent in each state benonlattice: i.e., not always an integral multiple
of some constant, so that the notion of “steady state” can be defined without reference to specifics about exactly when, in
the far future, we observe the process. For route durations, this seems like a plausible assumption.
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Figure 7.1: Fraction of measurements observing the dominant route, for all paths, at all granularities
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shows how route changes at city or AS path granularity do not necessarily imply changes at the
other granularity, since neither is strictly below the other).

A key figure to keep in mind from this plot, however, is that, while there is a wide range
in the distribution of̂�dom over different paths, itsmedianvalue at host granularity is 82%; 97% at
city granularity, and 100% at AS path granularity. The clustering of many paths only ever exhibiting
a single route (i.e., prevalence= 100%) reflects the finding we develop below inx 7.6 that many
routes are long-lived. (If we had data gathered over periods of time exceeding several weeks, we
would doubtless find that the spike at prevalence= 100% would spread out to values in the upper
90%'s.) Thus, we can conclude:In general, Internet paths are strongly dominated by a single route.

Our previous work, however, has shown that many characteristics of network traffic ex-
hibit considerable site-to-site variation [Pa94a], and thus it behooves us to assess the differences in
�̂dom between the sites in our study. To do so, for each sites (and for each granularity) we computed:

�̂src s=

P
src pathssi ksiP
src pathssj nsj

:

whereksi is the number of times we observed the dominate route when measuring a path from
sources to destinationi, andnsj

is the total number of times we made a measurement of the path
from sources to destinationj.

The aggregate estimatê�src sthen indicates the overall prevalence of dominant routes from
s to different destinations. We expect variations in this estimate for different sites to reflect differing
routing prevalence due to route changesnear the source. Route changes further downstream from
the source occur either deep inside the network (and so will affect many different sites), or near the
destination (and thus will not affect any particularsourcesite unduly).

Similarly, we can construct̂�dst s for all of the paths with destinations. Studying�̂src s

and�̂dst s for different sites and at different granularities reveals considerable site-to-site variation,
in agreement with the general findings in [Pa94a]. Figure 7.2 shows the values computed for�̂src s

for each of theR2 sites, at host granularity. We find that the prevalence of the dominant routes
originating at theucl source is under 50% (we will see inx 7.6.1 the main cause for this), and
for bnl , sintef1 , sintef2 , andpubnix is around 60%; while forncar , ucol , andunij , it is
just under 90%. Even at AS path granularity, theucl source has an average prevalence of 60%,
with ukc about 70%, and the remainder from 85% to 99%. At city granularity, however, the main
outlier isbnl , with a prevalence of 75% (c.f.x 7.6.2), because theucl andukc instabilities, while
spanning autonomous systems, do not span different cities.

We find similar spreads for̂�dst s for different destination sitess. Figure 7.3 shows the
per-site values, computed for host granularity. Sometimes the sites with low overall prevalence are
the same as the sites with low prevalence for�̂src s (e.g.,ucl ), and sometimes they are different
(e.g.,ukc ); this variation is due toasymmetricrouting, which we analyze in Chapter 8.

We can thus summarize routing prevalence as follows:In general, Internet paths are
strongly dominated by a single route, but, as with many aspects of Internet behavior, we also find
significant site-to-site variation.
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7.6 Routing Persistence

We now turn to the more difficult task of assessing thepersistenceof routes: How long
they are likely to endure before changing. As illustrated inx 7.3, unlikeprevalence, routing persis-
tence can be difficult to evaluate because a series of measurements at particular points in time do
not necessarily indicate a lack of changeand then change backin between the measurement points.
Thus, to accurately assess persistence requires first determining whether routing alternates on short
time scales. If not, then we can trust shortly spaced measurements observing the same route as
indicating that the route did indeed persist during the interval between the measurements. If shortly
spaced measurements can be trusted in this fashion, then they can be used to assess whether routing
alternates on medium time scales.

Fortunately, we have measurements made at a number of different intervals: about 60%
of theR2 measurements were exponentially distributed with a mean of 2 hours, and the other 40%
with a mean of about 66 hours (with wide variation in the actual intervals, since they were expo-
nentially distributed). While these measurements do not allow us to directly address the problem of
assessing persistence—doing so would require a way to unambiguously determine exactly when a
route changed, which could be done by tracing BGP routing information exchanges,6 but not from
end-to-endtraceroutes —our strategy is to analyze the measurements with the shorter spacing to
assess the frequency of route alternations, and, in turn, to determine to what degree we can trust the
measurements with larger spacing. In this fashion, we aim to “bootstrap” ourselves into a position
to be able to make sound characterizations of routing persistence across a number of time scales.

7.6.1 Rapid route alternation

In order to reliably analyze widely-spacedtraceroute measurements, we must first
assess the predominance of rapidly alternating routes. We have already identified two types of
rapidly alternating routes, those due to “flutter” and those due to “tightly coupled” routers. We have
separately characterized fluttering (x 6.6) and consequently have not included paths experiencing
flutter in this analysis. As mentioned inx 7.4, we merged tightly coupled routers into a single entity,
so their presence also does not further affect our analysis of rapidly alternating routes.

We next note that inR2 we observed 155 instances of a route change during a
traceroute . The combined amount of time observed by the 35,109R2 traceroutes was
881,578 seconds. (That is, the mean duration of aR2 traceroute was 25.1 seconds.) Since
when observing the network for 881,578 seconds we saw 155 route changes, we can estimate that
on average we will see a route change every 5,687 seconds (� 1.5 hours). This reflects quite a high
rate of route alternation, and bodes ill for relying on measurements made much more than a few
hours apart (though seex 7.6.2); but it is not such a high rate that we would expect to completely
miss routing changes for sampling intervals significantly less than an hour.

We first looked at thosetraceroute measurements that were made less than 60 seconds
apart. There were only 54 of these, but all of them were of the form “R1; R1”—i.e., both of the
measurements observed the same route. This provides credible, though not definitive, evidence that

6As briefly mentioned inx 3.2, recent work by Jahanian, Labovitz and Malan pursues this approach with very inter-
esting results [JLM97]. We became aware of this work too late to discuss it here, but will address it in the version of
[Pa96b] that we are presently revising for publication inIEEE/ACM Transactions on Networking.
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there are no additional widespread, high-frequency routing oscillations, other than those we have
already characterized.

We then looked at measurements made less than 10 minutes apart. There were 1,302
of these, and 40triple observations (three observations all within a ten minute interval). The triple
observations allow us to double check for the presence of high-frequency oscillations: if we observe
the patternR1; R2; R1 orR1; R2; R3, then we are likely to miss some route changes when using only
two measurements 10 minutes apart. If we only observeR1; R1; R1; R1; R2; R2; or R1; R1; R2,
then measurements made 10 minutes apart are not missing short-lived routes. Of the 40 triple
observations, none were of the formR1; R2; R1 or R1; R2; R3, confirming the finding from the
60 second observations that there are no additional sources of high-frequency oscillation.

The 1,302 ten-minute observations included 25 instances of a route change (R1; R2). This
suggests that the likelihood of observing a route change over a ten minute interval is not negligible,
and requires further investigation before we can look at more widely spaced measurements.

A natural question to ask concerning 10-minute changes is whether they are equally likely
to occur along paths between any two sites, or if just a few sites are responsible for most of the
10-minute changes.7 This is an important consideration: if all paths are equally likely to exhibit
a change during a 10-minute interval, then from the figure above of 25 changes observed out of
1,302 ten-minute observations we could conclude that routes change, on average, 25 times per
(1; 302 � 10 min), or about once every eight hours.

We test whether paths to or from particular sites are more prone to change than others as
follows. For each sites, let N10

src s be the number of 10-minute pairs of measurements originating
at s, andX10

src sbe the number of times those pairs reflected atransition (i.e., the pair wasR1; R2).
Similarly, defineN10

dst s andX10
dst s for those pairs of measurements with destinations. Here we are

aggregating, for each site, all of the measurements made using that site as a source (destination), in
an attempt to see whether route oscillations are significantly more prevalent near a handful of the
sites.

For each sites, we can then define:

P 10

src s=
X10

src s

N10
src s

;

and similarly forP 10

dst s. These values then give the estimated probability that a pair of ten-minute
observations of paths with source (or destination)s will show a routing change. We now check
theP 10

src s (andP 10
dst s) estimates for each site to determine which sites appear particularly prone to

exhibiting changes during ten minute intervals.
Figure 7.4 shows the sortedP 10

dst s estimates. We see, for example, that none of the 10-
minute measurements of paths to the destinationadv observed a route change, but more than 12% of
those toaustr did. From the plot,austr appears to be an outlier, and merits further investigation.
Before removing it as an outlier, however, we must be careful to first look at its routing oscillations
to see what patterns they exhibit.

For the destinationaustr , the 10-minute changes involve a number of source sites:
inria , mit , near (twice), andpubnix . All of the changes take place at the point-of-entry

7Certainly no single path (between the same source/destination pair) is skewing the count of 10-minute changes, since
the most frequently observed single path only accounted for 8 of the 1,302 observations.
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into Australia.8 The changes are either the first Australian hop ofvic.gw.au , in Melbourne,
or act.gw.au , in Canberra, orserial4-6.pad-core2.sydney.telstra.net in Sydney fol-
lowed by an additional hop tonsw.gw.au (also in Sydney). These are the only points of change:
before and after, the routes are unchanged. Thus, the destinationaustr exhibits rapid (time scale of
tens of minutes) changes in its incoming routing, and these changes are non-negligible, since they
involve different Australian cities. As such, the routingto austr is not at all persistent.

However, for the next potential outlier,sandia , the story is different. Both of its changes
occurred along the path originating atsri , and reflected the following change at hops 8 and 9:

core-fddi-0.sanfrancisco.mci.net
borderx2-fddi0-0.sanfrancisco.mci.

versus:

core2-fddi-0.sanfrancisco.mci.net
borderx2-fddi-1.sanfrancisco.mci.net

These changes are localized to a single city. Furthermore, had this change been more prevalent, we
might have decided that the two pairs of routers in question were “tightly coupled” (x 7.4), except
that it turns out that they are responsible for routing changes only betweensri andsandia . Thus,
we can deal with this outlier by just eliminating the pathsri ) sandia , but keeping the other
paths with destinationsandia .

In addition to the destinationaustr , a similar analysis ofP 10
src spoints upucl , ukc , mid ,

andumann as outliers. Bothucl andukc had frequent oscillations in the routers visited between
London and Washington, D.C., alternating between the two hops of:

icm-lon-1.icp.net
icm-dc-1-s3/2-1984k.icp.net

and the four hops of:

eu-gw.ja.net
gw.linx.ja.net
us-gw.thouse.ja.net
icm-dc-1-s2/4-1984k.icp.net

Note that these different hops also correspond to different AS's, as the latter includes AS 786
(JANET) and the former does not. Formid andumann, however, the changes did not have a clear
pattern, and their prevalence could be due simply to chance.

On the basis of this analysis, we conclude that the sourcesucl andukc , and the desti-
nationaustr , suffer from significant, high-frequency oscillation, and excluded them from further
analysis. After removing any measurements originating from the first two or destined toaustr , we
then revisited the range of values forP 10

src sandP 10

dst s. Both of these now had a median of 0 observed
changes, and a maximum corresponding to about 1 change per hour (this latter rate is computed by
dividing the number of route changes observed for the site's paths by total amount of time spanned
by the measurements of those paths). On this basis, we believe we are on firm ground treating pairs
of measurements between these sites, made less than an hour apart, both observing the same route,
as consistent with that route having persisted unchanged between the measurements.

8Note that in general the paths toaustr andaustr2 use two different trans-Pacific links, which is whyaustr2
does not exhibit these rapid changes.
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7.6.2 Medium-scale route alternation

Given the findings in the previous section that, except for a few sites, route changes do not
occur on time scales less than an hour, we now turn to analyzing those measurements made an hour
or less apart to determine what they tell us about medium-scale routing persistence. We proceed
much as inx 7.6.1.

Let P hr
src sandP hr

dst sbe the analogs ofP 10
src sandP 10

dst s, but now for measurements made an
hour or less apart. After eliminating the rapidly oscillating paths identified in the previous section,
we have 7,287 pairs of measurements to assess.

The data also included 1,517 triple observations spanning an hour or less. Of these, only
10 observed the patternR1; R2; R1 or R1; R2; R3, indicating that, in general, two observations
spaced an hour apart are not likely to miss a routing change.

Plots similar to Figure 7.4 immediately pick out paths originating frombnl as exhibiting
rapid changes. These changes are almost all from oscillation betweenllnl-satm.es.net and
pppl-satm.es.net . The first of these is in Livermore, California, while the other is in Princeton,
New Jersey, so this change is definitely major. ESNET oscillations also occurred on one-hour time
scales in traffic betweenlbl (andlbli ) and the Cambridge sites,near , harv , andmit .

The other prevalent oscillation we found was between the sourceumann and the destina-
tionsucl andukc . Here the alternation was:

ch-s1-0.eurocore.bt.net
uk-s1-1.eurocore.bt.net

which goes through Switzerland to reach England, versus

nl-s1-1.eurocore.bt.net
uk-s1-0.eurocore.bt.net

which goes through the Netherlands instead, also a major change.
Eliminating these oscillating paths leaves us with 6,919 measurement pairs. These paths

are not statistically identical (i.e., we find among them paths that have significantly different route
change rates), but all have low rates of routing changes. For these paths, the medianP hr

src sandP hr

dst s
correspond to one routing change per 1.5 days, and the maximum to one change per 12 hours.

7.6.3 Large-scale route alternation

Given that, after removing the oscillating paths discussed inx 7.6.1 andx 7.6.2, we expect
at most on the order of one route change per 12 hours, we now can analyze measurements less than
6 hours apart of the remaining paths to assess longer-term route changes. There were 15,171 such
pairs of measurements. As 6 hours is significantly larger than the mean 2 hour sampling interval
(x 7.6), not surprisingly we find many triple measurements spanning less than 6 hours. But of the
10,660 triple measurements, only 75 included a route change of the formR1; R2; R1 orR1; R2; R3,
indicating that, for the paths to which we have now narrowed our focus, we are still not missing
many routing changes using measurements spaced up to 6 hours apart.

Employing the same analysis, we first identifysintef1 andsintef2 as outliers, both
as source and as destination sites. The majority of their route changes turn out to be oscillations
between two sets of routers. The first alternates between:
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trd-gw2.uninett.no

in Trondheim, and

oslos-gw.uninett.no
trds-gw.uninett.no

(or the reverse of this, for paths originating atsintef1 or sintef2 ), which includes an extra hop
to Oslo. The second alternates between:

nord-gw.nordu.net
no-gw.nordu.net

(or the reverse), the first hop in Stockholm and the second in Trondheim, and

syd-gw.nordu.net
no-gw2.nordu.net
oslos-gw.uninett.no
trds-gw.uninett.no

which again adds a visit to Oslo (middle two hops).
Two other outliers at this level are traffic to or fromsdsc , which alternates between two

different pairs of CERFNET routers, all sited in San Diego, and traffic originating frommid , which
alternates between two MIDNET routers, both in St. Louis.

Eliminating these paths leaves 11,174 measurements of the 712 remaining paths. The
paths between the sites in these remaining measurements are quite stable, with a maximum transition
rate for any site of about one change every two days, and a median rate of one change every four
days.

7.6.4 Duration of long-lived routes

We will term the remaining measurements as corresponding to “long-lived” routes. For
these, we might hazard to estimate the durations of the different routes as follows. We suppose that
we are not completely missing any routing transitions (changes of the formR1; R2; R1, where we
only observe the first and last). We base this assumption on the overall low rate of routing changes.
Then, for a sequence of measurements all observing the same route, we assume that the route's
duration was at least the span of the measurements. So if the last observation was made two weeks
after the first observation, we assume the route's duration was at least two weeks. Furthermore, if at
time t1 we observe routeR1, and then the next measurement at timet2 observes routeR2, we make
a “best guess” that routeR1 terminated and routeR2 began half way between these measurements,
i.e., at timet1+t2

2
.

For routes observed at the beginning (end) of our measurement period, but not spanning
the entire measurement period, we assign a starting (ending) time as follows. If the next (previous)
measurement also observed the route, then we estimate that the route persisted for at least that
much time into the past (future). If the next (previous) measurement didnot observe the route,
then we take the lone observation of the route as its starting (ending) time. This rule will tend to
underestimate routing durations, while the rule in the previous paragraph will tend to overestimate
(due to occasionally missing a routing change), so these estimation errors will to some degree tend
to cancel.
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Figure 7.5: Estimated distribution of long-lived route durations

Figure 7.5 shows the distribution of the estimated durations of the “long-lived” routes.
Even keeping in mind that our estimates are rough, it is clear that the distribution of long-lived route
durations has two distinct regions, with many of the routes persisting for 1-7 days, and another
group persisting for several weeks. (Although not evident from the plot, about 4% of the routes
had durations under 6 hours, so we might consider the distribution as having three distinct regions.)
About half the routes persisted for under a week, but the half of the routes lasting more than a week
accounted for 90% of total persistence, meaning the integrated amount of time during which routes
remained unchanged. This means that, if we observe a path at an arbitrary point in time,and we are
not observing one of the numerous, more rapidly oscillating paths outlined in the previous sections,
then we have about a 90% chance of observing a route for that path with a duration of at least a
week.

7.6.5 Summary of routing persistence

We summarize routing persistence as follows. First,routing changes occur over a wide
range of time scales, ranging from seconds to days.Table XII lists different time scales over
which routes change. The second column gives the percentage of all of our measurement paths
(source/destination pairs) that were affected by route changes at the given time scale. (The first
two rows show “N/A” in this field because the changes were due to a very small set of routers, so
we do not claim any sort of representative fractions.) The third column gives the section where
we discuss the changes, and the final column any associated notes. When the note mentions “in-
side the network” or “intra-network,” we mean that the changes occurred not at the stub networks
where the sites themselves connect to the Internet, but instead in what we would deem the Internet
infrastructure.

One important point apparent from the table is that routing changes on shorter time scales
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Time scale % Paths Affected x Notes

seconds N/A x 6.6 “Flutter” for purposes of load balancing. Treated
separately, as a pathology, and not included in the
analysis of persistence.

minutes N/A x 7.4 “Tightly-coupled routers.” We identified five in-
stances, which we merged into single routers for the
remainder of the analysis.

10's of minutes 9% x 7.6.1 Frequent route changes inside the network. In some
cases involved routing through different cities or
AS's.

hours 4% x 7.6.2 Usually intra-network changes.
6+ hours 19% x 7.6.3 Also intra-network changes.
days 68% x 7.6.4 Two regions. 50% of routes persist for under 7 days.

The remaining 50% account for 90% of the total
route lifetimes.

Table XII: Summary of persistence at different time scales

(fewer than days) happeninside the networkand not at the stub networks. Thus,those changes
observed in our measurements are likely to be similar to those observed by most Internet sites.

On the other hand, while the changes occurred inside the network, only those involving
ucl andukc (x 7.6.1) involved different sequences of autonomous systems. While this bodes well
for the scalability of BGP, we do not claim this finding as having major significance: one could
make a much more thorough assessment of the degree of inter-AS route flapping by analyzing the
data discussed in [Do95, Me95b].

Finally, two thirds of the Internet paths we studied had quite stable paths, persisting for
days or weeks. This finding is in accord with that of Chinoy's, who found that most networks are
nearly quiescent (in terms of routing changes) while a few exhibit frequent connectivity transitions
[Ch93].

7.7 Detecting route changes

Given our findings that routes change in the Internet on a wide range of time scales, we
would like to find mechanisms by which an endpoint can detect that its route to a remote destination
has changed. This knowledge has two different applications. The first is that it allows the endpoint
to flush any cached information associated with the route, such as round-trip time or available
bandwidth. The second application is for network measurement experiments. A number of Internet
experiments have been made in which a path through the network is repeatedly sampled [Mi83,
CPB93a, Bo93, SAGJ93, Mu94, BCG95]. For such measurements it is important to know whether
each time the path is measured, the measurement is observing the same route for that path, or
whether the route may have changed (affecting the measurement).

While traceroute can be used to elicit the route currently used for a given Internet path,
its use is expensive in terms of network resources, and also slow because of the necessity to wait for
(possibly dropped) replies to many probe packets.
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Granularity False positives False negatives Error rate

host 0% 25% 3%
city 4% 26% 5%

AS path 5% 10% 5%

Table XIII: Summary of TTL method for detecting route changes at different granularities

On the other hand, endpoints can easily determine whether a route's hop count has
changed by seeing whether the TTL of packets arriving from the remote destination differ from
the previously observed TTL. Because the IP TTL field is in fact a hop count and not a time-to-live
(x 4.2.1), this measurement has no noise, provided the remote destination always sends packets with
the same initial TTL. Thus, the endpoint need receive only a single packet from the destination in
order to detect that the hop count of the path from the destination to the endpoint has changed. We
call this method the “TTL method.” To our knowledge, it was first used in [CPB93a].

While the TTL method has an attractive simplicity, it will sometimes result in “false neg-
atives”: the underlying route might have changed, perhaps drastically, but if the new route happens
to have the same number of hops as the cached one, the TTL method will report it as unchanged.
In this section, we explore the degree to which these false negatives affect the practicality of the
method.

After removing pathologies and fluttering paths, the data contained 30,145 consecutive
traceroutes for us to test. Of these, 3,380 were route changes when viewed at host granularity,
1,928 at city granularity, and 1,266 at AS path granularity.

We consider a route to have changed if and only if it did not visit exactly the same hosts
(cities; AS's) in the same order. Before determining the host visited at each hop, however, we
merged the “tightly-coupled” routers discussed inx 7.4 into a single router.

We deem the method as generating a “false positive” if it erroneously declares that the
route changed, and a “false negative” if it fails to detect that the route did indeed change. To make
these notions more precise, suppose that, out ofN observations,K were genuine route changes
at a given granularity, but of theseK the method only detectsk, and it also erroneously “detects”
b bogus route changes. Then the false positive rate isb=(N � K), and the false negative rate is
(K � k)=K. We can also define an overall “error rate,” which is the proportion of time that the
method misinforms us one way or the other:(b+K � k)=N .

Barring the remote host altering its initial TTL setting, or routers actually decrementing
the TTL field for each second they delay a packet, the TTL method will never generate a false
positive at host granularity9 . It can do so at other granularities, however, when the underlying route
changes in the number of hops, but the same cities or AS's are still visited. At all three granularities,
the TTL method can generate false negatives.

Table XIII summarizes the effectiveness of the TTL method for detecting different gran-
ularities of route changes. Its overall error rate is consistently low. This is mostly a reflection of
the fact that all-in-all the underlying route does not change very often. Because in the absence
of any change whatsoever the TTL method always reports “no change,” it is correct whenever the

9Provided we exclude from testing pathological routes that visit a given hop more than once, which we did.
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underlying route has not changed.
At no granularity, however, is the false negative rate especially good, and at city and AS

path granularities the false positive rate is non-negligible, too. Thus, we conclude that the TTL
method serves as a handy heuristic, but is definitely not fool-proof. Still, it seems worthwhile to
use the TTL method to detect route changes when conducting the network measurement studies
mentioned at the beginning of this section, and the generally low false positive rate suggests that
flushing cached route information upon observing a TTL change will usually be the correct action.
One must not, however, be too complacent in accepting the absence of a TTL change as indicative
of an unchanged route.

A final note concerning the TTL method: The TTL value most easily available to an
endpoint for caching is that in packets the endpoint receives from the remote host. The TTL's in
these packets reflect the hop count for the routefrom the remote host to the local host. If the routes
between the two hosts are asymmetrical, however, then this hop count doesnot necessarily reflect
the hop count along the route in the other direction (local host to remote host), which is generally
the direction of interest. As shown in Chapter 8, routing asymmetry is not uncommon. Because
of this, use of the TTL method may require some additional mechanism by which the local host
can learn the TTL the remote host observed in packets it received from the local host. We do not
attempt here to offer a well thought out mechanism for doing so. We only comment that any such
mechanism must take care that, when a route changes, the network is not immediately flooded with
messages to that effect. Perhaps a solution can be found using multicasting techniques to minimize
the number of messages sent after route changes.


