APPENDIX C - CDDB SERVER PROTOCOL

Notation:

-> : client to server

<- : server to client

terminating marker: `.' character in the beginning of a line

Server response code (three digit code):

First digit:

1xx
Informative message

2xx
Command OK

3xx
Command OK so far, continue

4xx
Command OK, but cannot be performed for some specified reasons

5xx
Command unimplemented, incorrect, or program error

Second digit:

x0x
Ready for further commands

x1x
More server-to-client output follows (until terminating marker)

x2x
More client-to-server input follows (until terminating marker)

x3x
Connection will close

Third digit:

xx[0-9]
Command-specific code

Note: "*" means, that the command is only for administrative use and requires

special access permissions, that normal users don't have.

CDDB Protocol Level 1:

Server sign-on banner:

<- code hostname CDDBP server version ready at date

 code:

200
OK, read/write allowed

201
OK, read only

432
No connections allowed: permission denied

433
No connections allowed: X users allowed, Y currently active

434
No connections allowed: system load too high

 hostname:

Server host name. Example: xyz.fubar.com

 version:

Version number of server software. Example: v1.0PL0

 date:

Current date and time. Example: Wed Mar 13 00:41:34 1996

Initial client-server handshake:

Note: This handshake must occur before other cddb commands

 are accepted by the server.

Client command:

-> cddb hello username hostname clientname version

 username:

Login name of user. Example: johndoe

 hostname:

Host name of client. Example: abc.fubar.com

 clientname:

The name of the connecting client. Example: xmcd, cda, EasyCD,

et cetera. Do not use the name of another client which already

exists.

 version:

Version number of client software. Example: v1.0PL0

Server response:

<- code hello and welcome username@hostname running clientname version

 code:

200
Handshake successful

431
Handshake not successful, closing connection

402
Already shook hands

List the genre categories:

Client command:

-> cddb lscat

Server response:

<- code Okay category list follows (until terminating marker)

<- category

<- category

<- (more categories...)

<- .

 code:

210
Okay category list follows

 category:

CD category. Example: rock

Query database for matching entries:

Client command:

-> cddb query discid ntrks off1 off2 ... nsecs

 discid:

CD disc ID number. Example: f50a3b13

 ntrks:

Total number of tracks on CD.

 off1, off2, ...:

Frame offset of the starting location of each track.

 nsecs:

Total playing length of CD in seconds.

Server response:

<- code categ discid dtitle

or

<- code close matches found

<- categ discid dtitle

<- categ discid dtitle

<- (more matches...)

<- .

 code:

200
Found exact match

211
Found inexact matches, list follows (until terminating marker)

202
No match found

403
Database entry is corrupt

409
No handshake

 categ:

CD category. Example: rock

 discid:

CD disc ID number of the found entry. Example: f50a3b13

 dtitle:

The Disc Artist and Disc Title (The DTITLE line). For example:

Pink Floyd / The Dark Side of the Moon

Read entry from database:

Client command:

-> cddb read categ discid

 categ:

CD category. Example: rock

 discid:

CD disc ID number. Example: f50a3b13

Server response:

<- code categ discid

<- # xmcd 2.0 CD database file

<- # ...

<- (CDDB data...)

<- .

or

<- code categ discid No such CD entry in database.

 code:

210
OK, CDDB database entry follows (until terminating marker)

401
Specified CDDB entry not found.

402
Server error.

403
Database entry is corrupt.

409
No handshake.

 categ:

CD category. Example: rock

 discid:

CD disc ID number. Example: f50a3b13

* Delete entry from database:

Client command:

-> cddb unlink categ discid

 categ:

CD category. Example: rock

 discid:

CD disc ID number. Example: f50a3b13

Server response:

<- code and message

 code and message:

200 OK, file has been deleted.

401 Permission denied.

402 File access failed.

501 Invalid category: categ.

 categ:

CD category. Example: rock

* Write entry to database:

Client command:

-> cddb write categ discid

 categ:

CD category. Example: rock

 discid:

CD disc ID number. Example: f50a3b13

Server response:

<- code and message

 code and message:

320
OK, input CDDB data (until terminating marker)

401
Permission denied.

402
Server file system full/file access failed.

409
No handshake.

Client data:

-> # xmcd 2.0 CD database file

-> # ...

-> (CDDB data)

-> .

Server response:

<- code message

 code:

200
CDDB entry accepted

501
Entry rejected: reason for rejection.

 message:

Message string to indicate write status:

CDDB entry accepted, or CDDB entry rejected.

Discid calculation:

Client command:

-> discid ntrks off_1 off_2 ... off_n nsecs

ntrks:

total number of tracks on CD.

 off_X:

frame offset of track X.

 nsecs:

total playing length of the CD in seconds.

Server response:

<- code Disc ID is discid

code:

200 Calculated disc ID properly

500 Command Syntax error

discid:

CD disc ID number calculated from the given arguments.

* Get a server system file:

Client command:

-> get file

 file:

filename of the file to get

Server response:

<- code message

or

<- code OK, (filename) follows (until terminating `.')

<- (file content)

<- .

 code and message:

210 OK, %s follows (until terminating `.')

401 Permission denied.

402 File access failed.

402 File not found.

Help information:

Client command:

-> help

or

-> help cmd

 cmd:

CDDB command. Example: quit

or

-> help cmd subcmd

 cmd:

CDDB command. Example: cddb

 subcmd:

CDDB command argument. Example: query

Server response:

<- code Help information follows

<- (help data ...)

<- .

or

<- code no help information available

 code:

210
OK, help information follows (until terminating marker)

401
No help information available

* Log statistics:

Client command:

-> log [[-l lines] [start date [end date]] | [day [days]] | [get]]

 lines:

The maximum number of lines to print for each data list in the

log statistics.

 start date:

The date after which statistics should be calculated. Date is

of the format: hh[mm[ss[MM[DD[[CC]YY]]]]]

E.g.:
201200053196 for 8:12 PM on May 31, 1996.

20120005312096 for 8:12 PM on May 31, 2096.

080530 for today at at 8:15 and 30 seconds.

If the century ("CC") is omitted, a reasonable guess is made. If

this argument is omitted, all messages are considered.

 end date:

The date after which statistics should not be calculated. If

omitted, the end date is assumed to be the current date.

 day:

The string "day". This solitary argument will cause a log search

of messages generated within the last day.

 days:

A positive numerical argument which modifies the number of days'

 messages to searh. If this argument is left out, the default is 1.

 get:

The string "get". This solitary argument will cause the server

to send the contents of the log file.

Server response:

<- code Log summary follows

<- (log stats)

<- .

or

<- code Log follows

<- (log stats)

<- .

 code:

210
OK, log summary follows (until terminating marker)

211
OK, log follows (until terminating marker)

401
Permission denied

402
No log information available

501
Invalid start/end date

Message of the day:

Client command:

-> motd

Server response:

<- code Last modified: date MOTD follows (until terminating marker)

<- (message text)

<- .

 code:

210
Last modified: 05/31/96 06:31:14 MOTD follows (until terminating marker)

401
No message of the day available

 date:

The date the text of the message of the day was modified. The date

appears in the following format:

05/31/96 06:31:14

This value may be used by client software as a message timestamp

for purposes of determining if it has already been displayed. This

format was chosen because it is more easily parsed than the standard

ctime() format.

Server protocol level:

Client command:

-> proto [level]

 level:

The (numerical) protocol level to set the server to.

Server response:

<- code CDDB protocol level: current cur_level, supported supported_level

or

<- code OK, protocol version now: cur_level

 code:

200
CDDB protocol level: current cur_level, supported supp_level

201
OK, protocol version now: cur_level

501
Illegal protocol level.

502
Protocol level already cur_level.

 cur_level:

The current protocol level at which the server is running.

 supported_level:

The maximum supported protocol level.

* Put a server system file:

Client command:

-> put file

 file:

sites or motd

Server response:

<- code message

 code and message:

320 OK, input file data (terminate with `.')

401 Permission denied.

402 File access failed.

402 Not a regular file.

Client data:

-> (file data of the file, that shall be written)

-> .

Server response

<- code message

 code and message:

200 Put successful.

402 File access failed.

501 Input too long.

Close connection to server:

Client command:

-> quit

Server response:

<- code hostname message

 code and message:

230 Closing connection. Goodbye.

530 error, closing connection.

 hostname:

Server host name. Example: xyz.fubar.com

Server sites:

Client command:

-> sites

Server response:

<- code OK, site information follows (until terminating `.')

<- (data)

<- .

 code:

210
Ok, site information follows

401
No site information available.

 The data format is as follows:

site port latitude longitude description

 The fields are as follows:

site:

 The Internet address of the remote site.

port:

 The port at which the server resides on that site.

latitude:

 The latitude of the server site. The format is as follows:

CDDD.MM

 Where "C" is the compass direction (N, S), "DDD" is the

 degrees, and "MM" is the minutes.

longitude:

 The longitude of the server site. Format is as above, except

 the compass direction must be one of (E, W).

description:

 A short description of the geographical location of the site.

 Example:

us.freedb.org 8880 N037.21 W121.55 San Jose, CA USA

Server status:

Client command:

-> stat

Server response:

<- code OK, status information follows (until terminating `.')

<- (data)

<- .

 code:

210
Ok, status information follows

 The possible data is as follows:

current proto:

 An integer representing the server's current operating protocol

 level.

max proto:

 The maximum supported protocol level.

gets:

 Whether or not the client is allowed to get log information,

 according to the string "yes" or "no".

updates:

 Whether or not the client is allowed to initiate a database

 update, according to the string "yes" or "no".

posting:

 Whether or not the client is allowed to post new entries,

 according to the string "yes" or "no".

quotes:

 Whether or not quoted arguments are enabled, according to

 the string "yes" or "no".

current users:

 The number of users currently connected to the server.

max users:

 The number of users that can concurrently connect to the server.

strip ext:

 Whether or not extended data is stripped by the server before

 presented to the user.

Database entries:

 The total number of entries in the database.

Database entries by category:

 This field is followed by a list of catgories and the number

 of entries in that category. Each entry is of the following

 format:

catgory:

 The list of entries is terminated by the first line that does

 not begin with white space.

* Pending file transmissions:

 This field is followed by a list of sites that are fed new

 database entries at periodic intervals, and the number of

 entries that have yet to be transmitted to that site.

 Each entry is of the following format:

site:

 The list of entries is terminated by the first line that does

 not begin with white space.

This list may grow as needed, so clients must expect possible

unrecognizable data. Also, additional fields may be added to

the currently existing lines, although no existing fields will

be removed or change position.

* Database update:

Client command:

-> update

Server response:

<- code Updating the database.

or

<- code Permission denied.

or

<- code Unable to update the database.

 code:

200 Updating the database.

401 Permission denied.

402 Unable to update the database.

* Perform user validation:

Client command:

-> validate

Server response:

<- 503 Validation not required.

or

<- 320 OK, input validation string, salt=saltvalue (terminate with newline)

Client data:

-> validation string

Server response:

-> code message

 code and message:

200 Validation successful.

501 Incorrect validation string length.

502 Invalid validation string.

Server version:

Client command:

-> ver

Server response:

<- code servername version copyright

or

<- code Version information follows

 code:

200
Version information.

211
OK, version information follows (until terminating marker)

 version:

Server version. Example: v1.5PL0

 copyright:

Copyright string. Example: Copyright (c) 1996-2001 Steve Scherf et al.

* Server users:

Client command:

-> whom

Server response:

<- code message

 code and message:

210
OK, user list follows (until terminating marker)

401
No user information available.

General errors:

Server response:

<- code error

 code:

402
Server error.

408
CGI environment error.

500
Command syntax error, command unknown, command unimplemented.

530
Server error, server timeout.

Reserved errors:

The following error codes are reserved, and will never be returned as a

response to a CDDB protocol command. They are intended to be used internally

by clients that have a need for generating pseudo-responses.

600-699

CDDB Protocol Level 2:

In all respects, protocol level 2 is the same as level 1, with the exceptions

listed below.

Arguments to commands may be surrounded by double quotes. All characters

within the quotes, including white space, are included in the argument. All

white space is replaced by the `_' (2Dh) character by the server. White space

is defined as ` ' (20h) and `^I' (control-I, or 09h).

Arguments containing quotes that should not be interpreted with the special

meaning described above should be escaped with a preceding backslash character,

or '\' (5Ch). If an actual backslash appears in an argument, it should be

escaped with a preceding backslash. In both cases, the preceding backslash

will be removed from the input before being interpreted.

CDDB Protocol Level 3:

Protocol level 3 is the same as level 2, with the exception listed below.

The output of the "sites" command has changed to meet the folowing description:

 The data format is as follows:

site protocol port address latitude longitude description

 The fields are as follows:

site:

 The Internet address of the remote site.

protocol:

 The transfer protocol used to access the site.

port:

 The port at which the server resides on that site.

address:

 Any additional addressing information needed to access the

 server. For example, for HTTP protocol servers, this would be

 the path to the CDDB server CGI script. This field will be

 "-" if no additional addressing information is needed.

latitude:

 The latitude of the server site. The format is as follows:

CDDD.MM

 Where "C" is the compass direction (N, S), "DDD" is the

 degrees, and "MM" is the minutes.

longitude:

 The longitude of the server site. Format is as above, except

 the compass direction must be one of (E, W).

description:

 A short description of the geographical location of the site.

 Example:

us.freedb.org cddbp 8880 - N037.21 W121.55 San Jose, CA USA

us.freedb.org http 80 /~cddb/cddb.cgi N037.21 W121.55 San Jose, CA USA

Note that a site may appear once for each type of protocol it supports for

accessing the server.

CDDB Protocol Level 4:

Protocol level 4 is the same as level 3, with the exception listed below.

The output of the "cddb query" command may result in multiple exact matches.

A new response code, 210, has been added to indicate that more than one

exact match has been found.

Server response:

<- code exact matches found

<- categ discid dtitle

<- categ discid dtitle

<- (more matches...)

<- .

 code:

 210 Found exact matches, list follows (until terminating marker)

CDDB Protocol Level 5:

Protocol level 5 is the same as level 4, with the following exception:

The database entries returned when issuing the "cddb read" command now also

contain DYEAR and DGENRE fields (between the DTITLE and the TTITLE's).

For more info on the new database entry fields take a look at the

database format specification.

CDDB Protocol Level 6:

Protocol level 6 is the same as level 5 except that the character set

is now UTF-8 instead of ISO-8859-1. Note that UTF-8 is an extension of

US-ASCII, just like ISO-8859-1 is an extension of US-ASCII, so there

is no difference between levels 5 and 6 as far as 7-bit ASCII data is

concerned.

Clients can convert data between UTF-8 and the user's preferred

character set using the iconv program and library function which are

provided by glibc-2.2 or by the portable library libiconv. (They are

also provided by the C library on some non-glibc systems, but often in

a buggy or incompatible form.) For example, to convert data to UTF-8

from the character set of the current locale in a shell script use

"iconv -t utf-8 < in > out".

For more information about Unicode and UTF-8 see:

 ftp://ftp.ilog.fr/pub/Users/haible/utf8/Unicode-HOWTO.html

 http://www.cl.cam.ac.uk/~mgk25/unicode.html

Addendum A: Proper use of CDDBP:

There are a few guidelines that must be followed in order to make proper use

of CDDBP:

- When handshaking with the server via the "cddb hello" command, the client

 must specify its own name and version, not that of some other client (such

 as xmcd). Also, the "username" and "hostname" should be that of the actual

 user running the program, not some hardwired value.

- Before performing a "cddb read", the client program MUST perform a

 "cddb query". Failure to do so may result in the client program receiving

 incorrect data from the server. Also, without performing a query, the

 client program will not benefit from close matches in the event of the

 lack of an exact match in the database.

- For accounting purposes, it is best if client programs only perform a single

 "cddb query" for a particular disc before performing a "cddb read" for that

 disc.

Addendum B: CDDBP under HTTP:

Accessing a server as a CGI script is done in much the same way as through

direct interaction. The command set is identical, though the method of

communication is through CDDBP commands encapsulated in the HTTP protocol.

The only limitation is that a single command may be executed per connection,

since HTTP is not truly interactive. For the server to be accessed in this

way, it must reside on the target host at a known URL (usually

http://freedb_server/~cddb/cddb.cgi) which is accessible by the host HTTP

server. The client program must connect to the HTTP server on the target host

and issue an HTTP command with the appropriate CDDBP command encapsulated

within.

Commands may be submitted to servers in CGI mode using either the "GET" or

"POST" HTTP commands. Both methods are supported, and there is no real

difference between how both are to be used other than the syntactical

difference between the two methods. The "POST" method may provide the ability

to issue longer commands, though, depending on the architecture of the system

on which the server resides.

The server command must be sent as part of the "Request-URL" in the case

of the "GET" method, and as the "Entity-Body" in the case of the "POST"

method. In both cases, the command must be of the following form:

cmd=server+command&hello=joe+my.host.com+clientname+version&proto=6

Where the text following the "cmd=" represents the CDDBP command to be

executed, the text following the "hello=" represents the arguments to

the "cddb hello" command that is implied by this operation, and the

text following the "proto=" represents the argument to the "proto" command

that is implied by this operation.

The "+" characters in the input represent spaces, and will be translated

by the server before performing the request. Special characters may be

represented by the sequence "%XX" where "XX" is a two-digit hex number

corresponding to the ASCII (ISO-8859-1) sequence of that character. The

"&" characters denote separations between the command, hello and proto

arguments. Newlines and carriage returns must not appear anywhere in the

string except at the end.

All CDDBP commands are supported under HTTP, except for "cddb hello",

"cddb write", "proto" and "quit".

For example, should user "joe" on system "my.host.com" be running xmcd 2.1,

a read request for his currenly playing CD might look like this:

cmd=cddb+read+rock+12345678&hello=joe+my.host.com+xmcd+2.1&proto=5

The server will perform the implied "proto" and "cddb hello" commands,

and then perform the requested "cddb read" command.

Server response to the command is encapsulated in the HTTP server response,

and appears in the "Entity-Body" exactly as it would appear using the CDDBP

protocol. Note that the HTTP response "Entity-Header" is not guaranteed to

contain a "Content-Length" field, so clients should be prepared to accept

variable length input. This is no different from operation under CDDBP. The

header will always contain a Mime "Content-Type" field which describes the

body of data as "text/plain".

For more detailed information on HTTP and Mime, see RFC 1945 and RFC 1521.

Addendum C: CDDBP under SMTP:

The use of e-mail mode (SMTP) commands is simple. A special subject line

lets the server know that the e-mail contains a command, and somewhere in the

body there should be a HTTP-style server command; the server will execute

only one such commands per e-mail.

The subject for e-mail commands should look like this:

Subject: cddb #command arbitrary_string

The "arbitrary_string" should be some randomly-chosen string. The server

will include this string in the subject of the response. The rest of the

subject should appear literally as it does here.

Somewhere in the body of the e-mail should be exactly one server command. For

example:

cmd=motd&hello=joe+my.host.com+xmcd_via_email+v1.0&proto=6

As you might have noticed, this command is exactly the same as a HTTP-mode

CDDBP command. The command response will be mailed to the sender. Upon

successful completion of an e-mail command request (even if the command

itself was not successful), the reply will contain a subject which looks

like this:

Subject cddb #response ok arbitrary_string

Should the server be unable to process the e-mail command for some reason, the

subject will look like this:

Subject cddb #response failed arbitrary_string

In both cases, the "arbitrary_string" is the same as the one specified in the

initial command e-mail.

