
Secure Open Wireless Access

Tom Cross
IBM X-Force

tcross@us.ibm.com

Takehiro Takahashi
takehiro.takahashi@gmail.com

ABSTRACT

One of the primary disadvantages of public Wi-Fi hotspots today

is that most do not afford their users with any data privacy, due to

the inconvenience of using pre-shared passwords. Worse yet,

users of open hotspots are left without any means to verify the

authenticity of wireless network providers. The consequences for

security and privacy are disastrous. We propose Secure Open

Wireless Access, a technology that enables Wi-Fi users to make

secure, encrypted connections to wireless access points without a

pre-shared password or other credential. Secure Open Wireless

Access works by reserving particular Service Set Identifiers

(SSIDs) for the exclusive use of the Wi-Fi network operators they

are associated with. These SSIDs are tied to the digital certificates

used in the anonymous form of the 802.1X EAP-TLS

authentication process. Hence an anonymous user can validate the

identity of the wireless network operator by comparing the SSID

of a wireless network with the digital certificate presented during

authentication. We propose two methods to institute exclusive

SSIDs; a global trusted SSID database and the use of domain

names as SSIDs. The latter is equivalent to the well known

security model of HTTPS used by web browsers. We

implemented and tested Secure Open Wireless Access with

popular implementations, and verified that our proposal is a viable

solution which provides an anonymous yet secure wireless

connection.

General Terms
Design, Reliability, Security, and Standardization.

Keywords
802.11, wireless security, 802.1X, EAP, RADIUS, TLS

1. INTRODUCTION
Open 802.11 [16] wireless access points are everywhere. You can

find them in hotels and airports, in living rooms and coffee shops,

in public parks and business conference centers, in fast food

restaurants and libraries. In some cities, municipal wireless

networks have been strung up by local governments, providing

Internet access all over town. Millions of people use these access

points every day to check their email, surf the web, and chat

online. Unfortunately, these people face security threats. Their

communications are broadcast by their wireless cards a fair

distance in cleartext and can be surveilled by anyone within range.

They may also encounter rogue access points that masquerade

under the same SSID as legitimate networks and launch man in

the middle attacks against them to steal payment credentials or

other sensitive information [13, 14].

While numerous attack tools that take advantage of this

vulnerability have been available for years, few have provided as

dramatic an illustration of the risks as Firesheep [6]. Firesheep is

an extension for the Firefox web browser that sniffs insecure

networks for potential victims accessing popular websites like

Twitter and Facebook. When Firesheep observes a potential

victim connecting to one of these websites, it collects the victim’s

authentication cookie and displays their name and photograph to

its user. (See Figure 1) The user can click on the victim and be

instantly logged into their account using the stolen access

credentials.

Figure 1. Firesheep

Of course, standards exist for encrypting wireless communications

with 802.11 access points, but they require that a password or

other credential be shared with the user before they can associate.

This is clearly a problem since most wireless service providers

have no way to establish a secret password with users before they

connect. Therefore wireless service providers typically allow

unencrypted connections, relying on captive web gateways as a

user friendly method of authentication and access control if it is

required. Unfortunately, this choice leaves user's traffic

unencrypted and exposed at the link layer.

The bottom line is that Wi-Fi users often face a hobson's choice

between using cumbersome pre-shared credentials or forgoing

link layer privacy and authentication all together. We present a

third way, Secure Open Wireless Access, in which a wireless

access provider presents a digital certificate tied to its Service Set

Identifier (SSID) [16] to provide for authentication of the service

provider and to generate keys for privacy encryption, without

requiring an individual pre-shared credential. Our approach

borrows from the well known security models of Secure Sockets

Layer (SSL) and Secure Shell (SSH) to allow trust to be

established between access points and anonymous users. The

result is that any unsolicited user can connect to an access point

without a pre-shared secret, but encryption is used, and the user

can be fairly certain that the access point is operated by a trusted

party.

In Section 2, we explain the motivation for Secure Open Wireless

Access, and briefly discuss prior work. Section 3 discusses our

threat model. Section 4 explains how digital certificates and

explicit SSIDs can address the problem. Section 5 explains how

Secure Open Wireless Access works at the protocol level. Section

6 suggests some desired changes to the 802.11 Management

Frame format to support Secure Open Wireless Access. Section 7

describes our prototype for Secure Open Wireless Access.

2. MOTIVATION AND PREVIOUS WORK
While the privacy concerns associated with attack tools like

Firesheep ought to be obvious, what may not be obvious is

whether the appropriate solution to this problem is to encrypt the

link layer of wireless communications. In our efforts to promote

Secure Open Wireless Access we have encountered a wide array

of counter arguments. Some people consider end to end

encryption of all Internet communications to be a more desirable

goal and argue that focusing on the wireless link layer is not

necessary. Demonstrations like Firesheep have prompted the

adoption of HTTPS by a number of major websites, and some

people believe that this effort is sufficient to protect wireless end

users from harm. Others believe that point to point VPN solutions

are the right approach to wireless security. We will address each

of these perspectives in turn.

First, let us consider the question of full end to end encryption on

the Internet. On some level, all Internet communications are

subject to surveillance. Untrustworthy network operators can see

Internet traffic regardless of whether or not it started out on a

wireless network, as can interlopers who've taken control over

poorly secured infrastructure routers and switches. That being the

case, there is a reasonable argument that all sensitive

communications across the Internet ought to be encrypted [18].

While we are sympathetic with that point of view, end-to-end

encryption of all Internet traffic seems a long way off, and the

wireless link layer deserves particular attention, because wireless

communications can be easier for attackers to intercept and

interfere with. While ISP infrastructure certainly can fall into the

hands of unscrupulous employees and system intruders, this

happens rarely. However, cleartext wireless traffic can be readily

intercepted by anyone who happens to be staying at the same

hotel, or sitting in the same public park, or coffee shop, or airport

terminal. In dense urban areas the number of people who have

access to a given unencrypted wifi transmission can be quite large.

This exact sort of consideration has led to cellular phones that

encrypt audio over the wireless link while the backbone network

still carries traffic in the clear to its destination. There is a greater

risk that wireless communications will be intercepted.

In response to public concern about the interception of wireless

communications, raised in some cases by demonstrations like

Firesheep, many large websites have adopted HTTPS for user

access and authentication. We think these efforts are important.

They can significantly reduce the risk that access credentials for

those websites will be compromised. However, we don’t think

this effort goes far enough toward addressing the risks that users

of wireless networks face. Most websites have not adopted

HTTPS, leaving much of wireless users’ traffic open to

surveillance and manipulation, and unencrypted link layers can

create opportunities for other kinds of attack scenarios.

Figure 2 is a photograph of a commercially available rogue wifi

access point called a Wifi Pineapple, which at the time of this

writing was being sold for $99 at hakshop.com. This device

allows the user to masquerade as a legitimate wireless access point

that clients are expecting to connect to. These clients connect to

the Wifi Pineapple instead, where, according to hakshop.com,

their traffic can be “easily viewed or even modified by the

pineapple holder.”

A tool called SSLStrip [5] provides an example of one attack that

a rogue access point might make. SSLStrip enables a rogue access

point to convert HTTPS links in HTML pages being transmitted

to the user into HTTP links that the attacker can observe. This

allows the attacker to see inside of connections made to HTTPS

websites by users who aren’t paying careful attention.

Figure 2. HakShop Wifi Pineapple

Users of a suspicious access point might decide to play it safe by

not accessing sensitive websites and limiting their browsing to

supposedly safe activities such as reading the news. However,

IBM's Rational Application Security Research Group recently

published a paper illuminating the dangers of that approach [22].

An active attacker can incorporate references to sensitive domains

into "safe" content. The victim's browser might be tricked into

serving up an authentication cookie for a website the victim did

not intend to access, or the victim's browser cache could be

poisoned with javascript of the attacker's choosing that will run in

the context of a sensitive site the next time the victim accesses it.

A rogue access point could also enable an attacker to create a

malicious captive gateway that uses network access fees as a

pretext to steal the victim’s credit card numbers. Although the

security model afforded by HTTPS certificates allows users to

know that they are, in fact, communicating with the website that

their browser says they are communicating with, this does not

help much if the user is unfamiliar with that website. Often,

wireless networks operated by well known companies will direct

users to HTTPS based captive payment gateways that are operated

by third parties with strange domain names that the user is

unlikely to be familiar with. Users have no choice but to enter

their payment credentials and hope for the best. They could easily

be connecting to a rogue access point with a safe sounding SSID

whose captive gateway site hosts a legitimate SSL certificate.

Although this concern could be addressed by better practices on

the part of wireless network operators, the fact is that it is the

SSID, and not the domain name of the captive gateway, that

establishes the identity of the network operator in the user's mind

and creates the foundation for trust.

Furthermore, service provider captive gateways cannot trust

authenticated users on unencrypted wireless networks. Gateways

prevent unauthorized access by checking the source IP and MAC

address of packets as they pass through. In an unencrypted

network, it is trivially easy for an attacker to assume the MAC

and/or IP of another legitimate user and begin communicating

without providing payment information or other credentials.

While encryption is not sufficient to solve this problem on

wireless networks, it is a necessary prerequisite, and can be

effective when coupled with firewall capabilities in the access

point that prevent users from intercommunicating or assuming IP

addresses that they were not assigned by DHCP.

There are VPN services that offer to solve some of these problems

by allowing users of suspicious access points to encrypt all of

their information and send it to a trusted party on the Internet,

who will decrypt it and send it on to its destination. However, this

approach is inefficient. Maintaining inbound and outbound

bandwidth for receiving and retransmitting user's traffic is

expensive and these services have to charge their users a monthly

fee. Furthermore, users have to be savvy enough to go to the

trouble of signing up and downloading the client software. Casual

Wi-Fi users need not apply. It seems clear to us that a more

fundamental solution is called for.

A few years ago George Ou, a technology journalist and IT

consultant, proposed a solution for encrypting anonymous Wi-Fi

connections using Protected Extensible Authentication Protocol

(PEAP) along with a digital certificate and a default username and

password of "guest" [19]. Mr. Ou's proposal comes close to

solving this problem, but it suffers from one important weakness

beyond the need to somehow inform users about the guest account

- it does not protect users from rogue access points. Anyone can

obtain a signed digital certificate associated with any domain that

they have registered, and setup an access point with the same

Service Set Identifier (SSID) as Mr Ou's access point. The way to

solve this problem is to take the next step, and tie the SSID to that

digital certificate. Although we have learned of one previous

author who has publicly suggested this approach, this paper is the

first time that the implications of this idea have been completely

evaluated [23].

3. THREAT MODEL
The attacker's goal is to eavesdrop or tamper with victim's

wireless traffic. We assume that the attacker is capable of

observing unprotected or weakly encrypted messages in the

vicinity. We consider WEP [16] and WPA-PSK [16] with a short

passphrase as weakly encrypted. We also assume that the attacker

can set up a rogue access point with an arbitrary SSID such as

"Free CoffeeShop WiFi", and can trick users into using the

attacker's access point. As a result of this, the attacker can observe

and manipulate some of victim's network traffic such as HTTP,

DNS, etc. An attacker running a rogue access point may be able to

set up a phoney captive gateway to collect victim’s access and

payment credentials. The attacker cannot tamper with or

eavesdrop on strongly encrypted traffic such as HTTPS or SSH.

4. SECURE OPEN WIRELESS ACCESS
The SSID is the primary means that Wi-Fi users have to identify

the networks that they use. If a digital certificate verified that the

operator of a Wi-Fi network was the exclusive, rightful user of the

SSID associated with that network, users could connect without

worrying that the network might be operated by someone else.

Figure 3 provides an example of how this would look from a

user's perspective. It shows a window with multiple wireless

networks in the user's vicinity that the user can choose to connect

to. There is an open wireless network with the SSID "insecure ap"

which does not provide secure connections. There is a second

wireless network with the SSID "home" which does offer secure

connections, but only to those who know the correct password.

And, there is a third wireless network which supports Secure

Open Wireless Access.

The SSID of the secure open wireless network in our example is

"wifi.ibm.com." If the user were to connect to this network, his or

her wireless client software would establish an encrypted

connection, verifying that the digital certificate presented by the

network during the connection setup process is signed by a trusted

certificate authority and is tied to the domain name

"wifi.ibm.com." As IBM is supposed to be the only organization

that can obtain valid digital certificates that are tied to domain

names within the "ibm.com" domain, the user can be relatively

sure that they are connecting to a wireless network that is operated

by IBM.

This process can help protect the user against the threat model

described in Section 3 of this paper without requiring a pre-shared

access credential. The user's connection is encrypted, so it cannot

be sniffed or manipulated, and the user is assured that the network

is operated by IBM and not an attacker. Hopefully the user trusts

IBM not to spy on or manipulate their Internet traffic. If the

network operator desires further client authentication, they can

use a captive portal without any of the risks currently associated

with the use of captive portals on unencrypted wireless networks

today.

Figure 3. Secure Open Wireless Access GUI Mockup

Secure Open Wireless Access protects users from rogue access

points by providing an assertion about the identity of the network

operator. This assertion will only protect users if they are willing

to exercise some discretion regarding which wireless networks

they are willing to connect to. Anyone can go out and get a digital

certificate and anyone can run a wireless network. Some of the

people who do so are going to be unscrupulous. If a user is

willing to connect to any network, regardless of what the SSID of

that network is, and regardless whether or not it is actually

protected by a digital certificate, then the existence of Secure

Open Wireless Access isn't going to do that user any good.

On the other hand, if a user is willing to be selective about which

wireless networks he or she connects to, Secure Open Wireless

Access can provide a number of interface cues that allow that user

to make informed choices. The first cues are the lock icon

associated with the access point and the lack of a warning about

encryption while connecting. These cues tell the user that they are

establishing an encrypted connection to the access point.

One advantage of this approach is that connecting to an

unencrypted wireless network can always result in a warning

message. Users should only be able to connect to a network

without seeing a warning message if that network connection is

encrypted. Compare this situation to that of HTTP, where

unencrypted websites are the default case and don't produce a

warning, and the signs that HTTPS is in use can be subtle. This

can lead to situations where users aren’t aware of the differences

between protected and unprotected websites. [5] With Secure

Open Wireless Access, the differences between encrypted and

unencrypted wireless networks would be clear to the user.

Another interface cue is the network SSID. Users can choose to

only connect to networks with SSIDs that they are familiar with

and comfortable with, knowing that criminals are unable to set up

secure networks with the same SSIDs. Although criminals could

attempt to register misleading SSIDs that are similar to those of

trusted network operators, registered SSIDs would be published in

a global database (such as the DNS) that network operators can

monitor for attempts at fraud.

We believe that this would be a vast improvement upon the

present status quo. Today, there is absolutely no way for a user to

know who is operating an open wireless network. Anyone can use

any SSID, and networks operated by criminals are totally

indistinguishable from legitimate networks. Accessing these

networks is always a bit of a "crap shoot." Users who are both

capable and willing to exercise some discretion have no means

with which to do so. Users who would prefer an encrypted

connection have no means to establish one. In dense urban

environments, where there are many wireless networks operating,

and one's traffic is exposed to many potential eavesdroppers, the

ability to ensure that you are communicating securely with a

network operator that you know and trust would be tremendously

valuable.

One barrier to the acceptance of this proposal is that it involves a

change in perspective about SSIDs. While Wi-Fi service providers

often choose unique SSIDs that identify the company operating

the network, the idea of globally exclusive SSIDs has never been

proposed before. Nevertheless, we see no reason why these

unique SSIDs cannot be considered the exclusive property of the

network operators that use them. This would not interfere with

legitimate reuse of generic sounding SSIDs (like "FreeWifi") by

insecure wireless networks.

Another objection that has been raised to this approach is that

adoption would spark a land rush by wireless network operators to

register generic sounding SSIDs like “Free Wifi” with certificate

authorities for exclusive use in secure wireless networking. The

whole point of associating SSIDs with certificates is to give users

an indication of the identity of the company or organization

operating a wireless network. Discerning users should be

suspicious of any supposedly secure access point with a generic

sounding SSID because those SSIDs don't convey any of that

identity information, which can form the basis for trust. Therefore,

generic sounding SSIDs have less value than unique names.

In addition to protecting open wireless networks from rogue

access points it is also worth considering whether certified SSIDs

might also improve the security of closed wireless networks. It is

currently possible to protect users of closed networks from attacks

by rogue access points through the use of mutual authentication,

but in order for this to work client computers must be configured

with specific radius server information associated with the SSID.

If closed networks were protected by certified SSIDs, users could

connect to them and present usernames and passwords without

preconfiguration of their computers and without fear that they

might be speaking with a rogue access point.

5. IMPLEMENTING SECURE OPEN

WIRELESS ACCESS
In order to explain how Secure Open Wireless Access is

implemented it is necessary to provide a little bit of background

on security in wireless networks. The 802.11 wireless networking

standard addresses authentication by incorporating IEEE 802.1X,

an authentication mechanism for devices wishing to attach to a

network. Figure 4 illustrates how the 802.1X authentication works

in a wireless network. First, a workstation informs a wireless

access point that it wants to connect to the network. If the access

point accepts this connection request, the workstation will then

engage in an authentication transaction with a network

authentication server, via the access point. If the authentication is

successful, the authentication server informs the access point, and

the access point establishes an encrypted connection with the

workstation, ideally using a strong encryption algorithm such as

AES with a secure protocol such as WPA2. Once that secure

connection is established, the workstation can begin using the

network.

The access point typically communicates with the authentication

server via the Remote Authentication Dial In User Service

(RADIUS) protocol [17]. RADIUS is a networking protocol that

offers authentication, authorization, and accounting management

for users, and is typically used by Internet Service Providers. The

access point uses the RADIUS protocol to encapsulate the

authentication transaction between the workstation and the

authentication server. The workstation authenticates to the server

using a form of Extensible Authentication Protocol (EAP) [17],

which is a framework for supporting a wide range of

authentication protocols over RADIUS.

Figure 4. 802.1X Authentication Process

EAP-TLS is the form of EAP used in Secure Open Wireless

Access. While it would be technically possible to implement our

proposal using other forms of EAP, such as PEAP or EAP-TTLS,

those protocols require client authentication, which is not desired

by an open access point. The IETF standard for EAP-TLS [21]

states in section 2.1.1 that under some circumstances, EAP-TLS

may be used in a context where no credential is provided by the

user, and only the identity of the network is really being

authenticated. The RFC states that "while the EAP server

SHOULD require peer authentication, this is not mandatory, since

there are circumstances in which peer authentication will not be

needed (e.g., emergency services, as described in [UNAUTH]), or

where the peer will authenticate via some other means" [21].

Following this observation in the RFC, authentication servers can

implement anonymous EAP-TLS by omitting a certificate_request

from the TLS server_certificate handshake message sent during

the EAP-TLS negotiation.

Our proposal consists of using this anonymous form of EAP-TLS

with exclusive SSIDs. When a workstation associates with a

network that supports Secure Open Wireless Access, the client

application on that workstation verifies the authenticity of the

access point by matching the SSID of the network with the SSID

in the digital certificate used by the authentication server in the

EAP-TLS negotiation. The client application also verifies that the

certificate was signed by a trusted, third party certificate authority.

If these checks fail, the application prompts the user with a

warning message indicating that the network may not be safe.

This process is analogous to the way that HTTPS connections

currently authenticate using SSL certificates, but in this case the

security is tied to SSIDs rather than domain names.

The private encryption keys for the digital certificate used in the

EAP-TLS transaction would be stored on the network

authentication server. Therefore Secure Open Wireless Access

would be relatively easy for network providers to deploy. A single

authentication server on the Internet could provide services to a

large number of wireless access points at multiple physical

locations. The authentication server could be hosted in an

environment with the high level of physical and network security

required to protect the integrity of private keys, even if the

wireless access points themselves are sometimes placed in open

environments. If an access point were physically stolen, the

network provider could easily revoke its RADIUS access.

There are two approaches to making SSIDs exclusive; utilizing

domain names or preparing a global, trusted SSID database. The

first method requires service providers to set their SSIDs to be the

same as their Internet domain names. This would be convenient,

since it is easy for SSL certificate authorities to validate that a

requesting entity controls a particular domain name, and domain

names are unique identifying strings that many consumers are

already familiar with. However, since the length of an SSID is

limited to 32 characters, this will only work for short domain

names without changes to the 802.11 protocol Moreover,

although the IETF 802.11 specification does not specify any

restrictions on the types of characters that can be used in SSIDs,

many wireless access points currently available do not allow

punctuations such as periods or hyphens. We discuss possible

802.11 protocol extensions to overcome some of these problems

in section 6.

If certificate authorities want to issue certificates for SSIDs that

are not domain names, they must communicate with each other

through a common database to ensure the following conditions

are true - (1) only one certificate is valid at any given time for a

particular SSID, and (2) SSID requests are globally unique and

related to the actual name of the organization requesting them,

which the certificate authorities will have to carefully verify. It is

possible that the existing whois database system could be used for

this purpose. However, it is also likely that such certificates will

be more expensive than modern SSL certificates, and would

require more hands on effort from certificate authorities in order

to issue them.

It is possible that a hybrid approach is desirable. Domain names

have a lot of value as identifiers because we already have an

infrastructure for issuing certificates tied to them. However,

network operators will need to prevent unauthorized parties from

obtaining useful certificates tied to names that are substantially

similar to their own SSIDs, in order to prevent fraud. Domain

names are tools that can be used in a variety of different contexts,

so the mere fact that another organization has registered a domain

Figure 5. Authentication State Diagram

name that is substantially similar to the SSID used by a network

operator may not be sufficient for that operator to establish a

trademark violation and have that domain name revoked. It would

help if names used for secure wireless access were published in a

global database specifically intended for that purpose so that

certificate authorities could avoid issuing certificates for secure

wireless access where there is a potential for confusion and

trademark claims could be made in the specific context of

providing wireless access. In order for this to work, digital

certificates intended specifically for secure wireless access would

need to be different from certificates used in other contexts, and

client software would need to be able to distinguish the two.

There may be a desire by some small network operators and home

users to be able to support Secure Open Wireless Access using

digital certificates that have not been signed by a certificate

authority. If a wireless client encounters a certificate that is not

signed by a known certificate authority, that client could engage

in an optional process that allows users to develop trust

relationships with uncertified wireless networks. The process we

propose is similar to the way that Secure Shell (SSH) allows users

to develop trust relationships regarding the keys used by SSH

servers. Figure 5 provides an overview of this process in the form

of a state diagram.

When the client first encounters a certificate that was not signed

by a trusted certificate authority or does not match the SSID

associated with that network, the client would confirm whether

the user has previously decided to trust this SSID and certificate

keyid combination when presented by a network. If so, the client

proceeds with the network authentication as if the certificate had

been signed correctly. Otherwise, the client checks to see if the

user has previously indicated implicit trust of this SSID with a

different certificate keyid or if this SSID has been used in a

context where the key was signed by a trusted certificate authority.

In these cases a stern warning is presented to the user, indicating a

possible attack in progress, and the user is allowed to proceed

only if they insist that they are aware of possible unwanted

consequences. On the other hand, if the user has not seen this

SSID before, the client presents the user with the fact that this is

an untrusted network, and asks whether the user would like to

implicitly trust this particular SSID-certificate combination in the

future.

It may also be helpful for clients that support Secure Open

Wireless Access to verify, when connecting to an insecure access

point, that the SSID associated with that access point has not been

seen in conjunction with a secure network in the past. If the SSID

has been seen before, a stern warning is also warranted. That

warning may help protect users from insecure networks

masquerading as trusted service providers.

Finally, we argue that certificate revocation should be handled

through Online Certificate Status Protocol (OCSP) [16] and

OCSP stapling [16]. OCSP is a standard protocol used for

verifying the revocation status of digital certificates, and it allows

a client to query a certificate issuer about a certificate's status.

Since the certificate issuer's response is signed by issuer's private

key, the status information cannot be tampered with. OSCP

stapling is a supplement protocol to OCSP, and it allows the

presenter of the certificate to cache the CA's time-stamped OSCP

response and forward it to the client. In the context of Secure

Open Wireless Access, the RADIUS server can implement OSCP

stapling so that a TLS handshake during EAP-TLS includes the

OCSP information as described in RFC4366 [16]. The client

would need to verify this information.

6. EXTENSIONS TO THE 802.11

MANAGEMENT FRAME
Our proposal for Secure Open Wireless Access could be

implemented today, with existing wireless access points and

wireless cards. Changes would be needed for wireless client

applications to support the certificate validation, SSID checking,

and other processes described in Section 5. RAIDUS servers may

also need to be modified to support the anonymous form of EAP-

TLS, which is not universally implemented as of this writing.

Wireless access points might need firmware updates to support

punctuation marks in SSIDs. Digital certificate authorities would

need to establish a process for issuing certificates for secure open

wireless access. However, the basic hardware devices in use today

for wireless networking can support this proposal without

modification.

Users of Secure Open Wireless Access would want some way to

differentiate these networks from closed, password protected

networks in the list of nearby access points presented by their

wireless clients. This could be achieved in the short term through

the use of a standard SSID naming convention. For example, if

domain names were used for certified SSIDs, users might learn to

associate the use of domain names with secure open wireless

access, and attempt to connect to networks with such SSIDs, in-

spite of the fact that those networks appear “locked” in their

wireless client.

Nevertheless, there are some changes that could be made to the

802.11 Management Frame specifications in order to make Secure

Open Wireless Access more user-friendly. First, it would be

helpful if wireless networks could advertise their support for

Secure Open Wireless Access in a way that clients could easily

detect. Second, SSIDs are currently limited by the 802.11

standard to 32 characters in length but domain names can be

longer. To fully support the use of domain names as SSIDs we

need to expand the SSID specification to support longer names as

well as internationalized domain names.

The basic format of 802.11 frames is depicted in Figure 6 and

Figure 7, and each frame consists of the following sections:

Figure 6. 802.11 Frame Header

Figure 7. Frame Control Field in 802.11 Frame Header

Figure 8. Information Element

1. A MAC header, which comprises frame control,

duration, address, and sequence control information,

and, for QoS data frames, QoS control information;

2. A variable length frame body, which contains

information specific to the frame type and subtype;

3. A FCS, which contains an IEEE 32-bit CRC.

The 3rd and 4th bits in MAC header's frame control field

represent 802.11 frame’s type whose value can be one of the

following: (1) management, (2) control, and (3) data.

Management frames allow wireless hosts to establish and maintain

connections. Control frames control device’s access to the

wireless medium. CTS (clear-to-send), RTS (request-to-send), and

ACK frames are good examples of the control frame. Finally,

data frames carry user payloads. The 5-8th bits in the header

represent each frame's subtypes. The frame body consists of an

array of information elements specific to each frame subtype.

Each information element is assigned a unique element ID, and

stores data in the Information section. Figure 8 illustrates the

information element format. In Secure Open Wireless Access, the

following information element types are extended: (1) RSN, and

(2) XSSID.

6.1 RSN (Robust Security Network)

The RSN information element describes the security features that

a wireless station supports. Specifically, it contains the cipher

suite information for authentication, pairwise key management,

and group key management, and is also a part of beacon and

probe response frames. Therefore, a wireless station can learn

about an access point’s support for Open Secure Wireless Access

if we extend the RSN information element.

The RSN information element, as illustrated in Figure 9, contains

the following fields: Element ID, Length, Version, Group Cipher

Suite, Pairwise Cipher Suite List, Authentication and Key

Management (AKM) Suite List, RSN Capabilities, and PMKID

List. The Group Cipher Suite field describes the cipher suite

selector used to protect broadcast/multicast traffic. Likewise, the

Pairwise Cipher Suite List field has a series of cipher suite

selectors for unicast traffic. These cipher suites types can be

WEP-40, TKIP, CCMP, WEP-104, etc. The AKM Suite List field

contains a series of AKM suite selectors supported by the station.

Each AKM suite selector indicates station's authentication and

key management capabilities. The RSN Capabilities field

indicates requested or advertised capabilities. The PMKID

(Pairwise Master Key ID) List field is used to transmit pairwise

master key IDs used for re-association.

We propose the following changes to the RSN information

element: (1) a new RSN capability bit field to indicate a support

for anonymous 802.1X authentication and (2) a new RSN

capability bit field to indicate support for certificate validation

against network’s SSID. We can support these features by using 2

of the 9 unused bits in the RSN capabilities field as shown in

Figure 10. We recommend using two bit fields to indicate these

two pieces of information separately since it allows for greater

flexibility. For instance, an operator of closed wireless networks

who wishes to use certified SSIDs to provide rogue access point

protection could use PEAP authentication with certificate

validation.

Wireless client software can display a wireless network as

supporting Secure Open Wireless Access if the RSN capability

field of a received beacon frame has the anonymous 802.1X and

certification validation bits set.

6.2 XSSID
In addition, we propose adding another information element type,

XSSID (eXtended SSID), to support full length, internationalized

domain names in SSIDs. Figure 11 illustrates the format for

XSSID. The first two fields specify its type and length, and the

third field holds the extended SSID value whose size can be up to

253 octets. A reserved element ID number such as 51 may be

good for the element ID.

Any management frames which support the SSID information

element, such as Beacon or Association frames, should support

the XSSID element. Secure Wireless Access ready clients should

display the XSSID value instead of the SSID whenever it is

available.

7. IMPLEMENTATION
We have implemented a proof of concept using several open

source projects such as FreeRADIUS[7], wpa_supplicant[8] and

wicd[10] under Ubuntu Linux. FreeRADIUS is a RADIUS server,

and wicd and wpa_supplicant are Linux network components

which work together to establish 802.11 connections. In this

section, we explain how these applications work together in

Secure Open Wireless Access, and describe the extensions we

Figure 9. RSN Information Element

Figure 10. RSN Capabilities Field Format

XSSIDElem. ID Length

1 1 0 - 253

Figure 11. XSSID Information Element

made to their source code. Figure 12 provides a rough illustration

of their interaction.

When our Secure Open Wireless Access client establishes a

connection to a wireless network, the following steps are taken:

1. The user chooses a network, and configures his

workstation to use Secure Open Wireless Access from

wicd's GUI.

2. Wicd signals wpa_supplicant on behalf of the user to

make a connection to the wireless access point using

anonymous EAP-TLS (Secure Open Wireless Access).

3. The access point understands the 802.1X request, and

forwards traffic to the FreeRADIUS server.

4. Wpa_supplicant and FreeRAIDUS initiate a TLS

handshake. Wpa_supplicant's certificate verification

code then checks the SSID against the server certificate.

5. If the authentication was successful, wpa_supplicant

proceeds to derive session keys with the access point.

6. Using the session keys, the workstation can now encrypt

traffic to the access point, and communicate with the

rest of the network.

The FreeRADIUS project offers a RADIUS server daemon, a

client, and several supplementing libraries. Their RADIUS also

supports a rich set of authentication protocols including EAP-TLS,

PEAP, EAP-TTLS, etc. For Secure Open Wireless Access, we had

to modify their EAP-TLS implementation to make anonymous

TLS possible. Specifically, we changed the source code in

rlm_eap_tls.c to use the SSL_VERIFY_NONE flag for the

OpenSSL [11] function "SSL_CTX_set_verify". This flag

prevents the server from sending a certificate_request message to

the client. With this small change, the FreeRAIDUS server

successfully handled requests from Secure Open Wireless Access

clients. Although further work such as policy management and

configuration parsing is needed to fully support Secure Open

Wireless Access, our FreeRADIUS implementation indicates that

other existing RADIUS server implementations are likely to

require little to no modification.

Wpa_supplicant is a supplicant tool for WPA, WPA2 as well as

802.1X, and it controls client's roaming/association with another

IEEE 802.11 station, and negotiates keys with a WPA

authenticator. Wpa_supplicant supports popular operating systems

such as Windows, Mac OSX, Linux and BSD, and is designed to

function as a daemon program which interacts with wireless

drivers and higher level user controls. We implemented our

proposed certificate verification process by registering a call back

function in wpa_supplicant's EAP-TLS component. Specifically,

we modified its OpenSSL library wrapper "tls_openssl.c", and

registered our custom certificate-SSID verification function using

SSL_set_verify. SSL_set_verify, like SSL_CTX_set_verify of

FreeRADIUS, allows the user to specify the certificate

verification flags as well as a verification callback function during

a TLS handshake. Hence, when our wpa_supplicant's EAP-TLS

module initiates a TLS connection to the RADIUS server, our

verification function determines whether this wireless network can

be trusted by checking to see if the SSID of the network matches

the Common Name of the certificate. We plan to implement the

authentication process illustrated in Figure 5 in the next version.

Wicd is a wired and wireless network manager for Linux, and it

provides a simple interface to configure and enforce a wide range

of network settings. Since wicd uses wpa_supplicant to control

wireless connections, it replaces wpa_supplicant's built-in GUI

frontend. We have extended wicd's GUI template written in

Python to support Secure Open Wireless Access.

In our future work, we plan to implement the 802.11 frame

extensions in the wireless client as well as the access point. We

may use an open source wireless driver like hostap [9] which can

be used for both clients and access points. Figure 13 illustrates

how the wicd GUI would look when the proposed extensions are

fully implemented in wpa_supplicant and wicd. A key lock icon

next to ISS-Wireless's signal strength indicates that the network

uses Open Secure Wireless Access.

8. CONCLUSION
With relatively minor changes to existing software and standards,

our proposal effectively solves a serious security problem which

has plagued wireless networks for many years. We enable users to

make encrypted connections to open wireless access points

without first establishing a username, password, or other

authentication credential and users can finally rest assured that the

wireless networks they are connecting to are, in fact, really

operated by the companies implied by their SSIDs. Our proposal

does not disrupt the existing use of SSIDs with insecure networks

and provides small network operators and home users the ability

to take advantage of the security properties offered by anonymous

encrypted connections without having to pay for a digital

certificate. It is our view that this proposal represents a significant

step forward for the security of wireless Internet infrastructure.

Figure 12. Secure Open Wireless Access Interaction

Figure 13. GUI Mockup

9. ACKNOWLEDGMENTS
We would like to thank Evgenv Cherkashin, David Dewey, and

Andrew vonNagy for their input and suggestions in developing

these ideas. David was the first person to suggest to us that

traditional domain names could be used as SSIDs. Andrew

suggested that we investigate certificate revocation lists more

carefully, the utility of certified SSIDs in closed networks and that

we might use the Information Element of the RSN rather than the

AKM Suite to convey support for this feature.

Note: IBM has a patent pending on Secure Open Wireless Access.

10. REFERENCES
[1] Kismet. http://www.kismetwireless.net

[2] Etherpeg. http://www.etherpeg.org

[3] Driftnet. http://www.ex-parrot.com/~chris/driftnet/

[4] Hamster Sidejacking Tool. http://hamster.erratasec.com

[5] SSLStrip. http://www.thoughtcrime.org/software/sslstrip

[6] FireSheep. http://codebutler.com/firesheep

[7] FreeRADIUS. http://www.freeradius.org

[8] wpa_supplicant. http://hostap.epitest.fi/wpa_supplicant/

[9] hostap. http://hostap.epitest.fi

[10] wicd. http://wicd.sourceforge.net

[11] OpenSSL. http://openssl.org

[12] R. Beyah, S. Kangude, G. Yu, B. Strickland, and J.
Copeland. Rogue access point detection using temporal

traffic characteristics. In Proc. IEEE GLOBECOM, Dec

2004.

[13] H. Yin, G. Chen, and J. Wang. Detecting Protected Layer-3

Rogue APs. In Proceedings of the Fourth IEEE International

Conference on Broadband Communications, Networks, and

Systems (BROADNETS), Raleigh, NC, September 2007.

[14] S. Jana and S. K. Kasera. On fast and accurate detection of
unauthorized access points using clock skews. In ACM

MOBICOM Conference, Sept. 2008.

[15] Scott R. Fluhrer , Itsik Mantin , Adi Shamir, Weaknesses in

the Key Scheduling Algorithm of RC4, Revised Papers from

the 8th Annual International Workshop on Selected Areas in

Cryptography, p.1-24, August 16-17, 2001

[16] IEEE Standard 802.11-2007. Information technology.
Telecommunications and information exchange between

systems. 2007.

[17] IEEE Standard 802.1X-2001. IEEE Standard for Local and
metropolitan area networks . Port-Based Network Access

Control. June, 2001.

[18] Network Working Group IAB. IAB and IESG Statement on

Cryptographic Technology and the Internet. RFC1984,

August 1996.

[19] Ou, G. A secure Wireless LAN hotspot for anonymous users.

http://blogs.zdnet.com/Ou/?p=587. July 2007.

[20] S. Blake-Wilson, M. Nystrom, D. Hopwood, J. Mikkelsen,

and T. Wright. RFC 4366: Transport layer security (TLS)

extensions, April 2006.

[21] D. Simon,B. Aboba, R. Hurst, RFC 5216 The EAP-TLS
Authentication Protocol, March 2008.

[22] Saltzman, R. and Sharabani, Adi. Active Man in the Middle

Attacks. OWASP AU. February 2009.

[23] Byrd, C. Open Secure Wireless. http://riosec.com/files/Open-

Secure-Wireless.pdf. May 2010.

