
ALU

with selectable

inputs and outputs

1

This page was intentionally left blank

2

DISCLAIMER
This project has been provided to you on behalf of:

S.C. ASICArt S.R.L.

www.asicart.com

eli_f@asicart.com

Author: Dragos Constantin Doncean
Email: doncean@asicart.com
Mobile: +40-740-936997

Downloaded from: http://www.opencores.org/

Copyright (C) 2007 Dragos Constantin Doncean
www.asicart.com
doncean@asicart.com

This source file may be used and distributed without restriction provided that this
copyright statement is not removed from the file and that any derivative work contains the
original copyright notice and the associated disclaimer.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

3

Table of Contents
1. INTRODUCTION...6
2. DESIGN..7

 Design architecture..7
Design architecture description..8

Functional description of the core..8
Features...8

Functional description..8
Clock...8
Reset..8
Input..8
ALU...9
ALU operations...9
Output..14

3. VERIFICATION...15
Verification environment architecture..15
Verification environment description...16

DUT...16
Monitors...16
Injectors..16
Collectors...16
Checkers...17
Other components..18

Methodologies applied for a design's test...18
Directed tests..18
Random tests..18
Complex/improved tests..18

4. FILES..20
5. RUNNING THE PROJECT..23
6. EXAMPLE WAVEFORMS..24

SELECTOR..24
ALU..25
DMUX..26

4

7. EXERCISES..27
8. REFERENCES..28
9. ERRATA...29

5

1. INTRODUCTION

The purpose of this document is to provide the necessary specifications for a core
called “ALU with selectable inputs and outputs”. Specifications will refer to:

– functional description of the core
– design architecture
– design architecture description
– verification environment architecture
– verification environment description
– methodologies applied for a design's test

The proposed core is a didactical project in Verilog. It's about a core containing an
ALU with three selectable inputs and two selectable outputs. The design itself is be suited for
Verilog beginners willing to make the next step by building a circuit having practical
requirements and that is a little more complex than the ones presented in Verilog books. In the
end, the interested persons will have tested all the operator types and operator symbols
existing in Verilog and will have closely observed the way Verilog performs operations with
the provided operands.

The source code contains tests, ranging from direct tests and random tests to improved
tests. I will present the advantages and disadvantages of each one of them. Improved tests will
be a very good introduction to design verification concepts like BFMs, monitors, collectors
and checkers. These verification environment components will be written in/adapted to
Verilog, since a design verification language (DVL) like Vera is not widely used in technical
universities or even more, not at home.

Included in source code there is a Makefile and a Perl script for running individual
tests. You will surely find them useful when building a design verification environment from
scratch for your own use or for a future big project.

By studying all the files in this project, understanding, modifying and improving them,
you will have an idea about how a design verification looks like. Also, you will have an idea
about the required steps for building a design according to specifications.

Also, experienced engineers, trainers or university academic staff and students will
find this project interesting as an exercise for new learners.

6

2. DESIGN

2.1 Design architecture

Fig. 1 – Design architecture for “ALU with selectable inputs and outputs”

7

2.2 Design architecture description

2.2.1. Functional description of the core

2.2.1.1.Features

• 3 input channels
• 2 output channels
• ALU performing all the operations known by Verilog
• parity calculation of ALU results
• serial data input
• serial data output
• selectable inputs depending on separate selection bits
• selectable outputs depending on selection bits from serial inputs
• signaling of valid output data

2.2.2 Functional description

2.2.2.1. Clock
The core performs its operations on the positive edge of the clock only.

 2.2.2.2 Reset
The reset is asynchronous and is active high.

 2.2.2.3 Input
This core should collect data from three input sources. The active source is marked by

select bits. Data is being given serially on the active input, in 8 bits granularity. The first byte
decodes the operator type, operation symbol and output channel. The following bytes (up to
three) represent the operands. A signal should indicate that there is an active read operation.

The beginning of a data read operation should be indicated by a strobe signal. When
that signal is high, the transaction's attributes should be valid (input channel selection and the
first data byte).

There must be a delay of 3 clock cycles minimum between assertion of the strobe

8

signal between two transactions in order for the circuit to function properly.

 2.2.2.4 ALU

ALU should take data serially every positive clock edge from the input logic and
should decode the first byte in order to see the operation that it should perform. Depending on
the decoded bits, it sends the result to the output logic on its output bus. The output is 16 bits
wide, the maximum necessary in order to transmit the full result.

Also, ALU calculates the parity for the result, a single bit being calculated as the XOR
of all the result's bits.

 2.2.2.5 ALU operations

The core's ALU should perform all possible Verilog operations according to the
following table:

Operator Type Operator Symbol Operation Performed Number of Operands

Arithmetic *

/

+

-

%

multiply

divide

add

substract

modulus

two

two

two

two

two

Logical !

&&

||

logical negation

logical and

logical or

one

two

two

Relational >

<

>=

<=

greater than

less than

greater than or equal

less than or equal

two

two

two

two

9

Operator Type Operator Symbol Operation Performed Number of Operands

Equality ==

!=

===

!==

equality

inequality

case equality

case inequality

two

two

two

two

Bitwise ~

&

|

^

^~ or ~^

bitwise negation

bitwise and

bitwise or

bitwise xor

bitwise xnor

one

two

two

two

two

Reduction &

~&

|

~|

^

^~ or ~^

reduction and

reduction nand

reduction or

reduction nor

reduction xor

reduction xnor

one

one

one

one

one

one

Shift >>

<<

right shift

left shift

two

two

Concatenation { } concatenation any number

Replication { { } } replication any number

Conditional ?: conditional three

Table 1. Operator Types and Symbols

10

The above table shows all the Verilog operator types and operator symbols . Our ALU
will implement the exact operations, with the following modifications for simplifying the first
version of this core:
– Operator Type = Concatenation => Number of Operands = two
– Operator Type = Replication => Number of Operands = two

The codifications for the above operations are:

Operator Type Codification
(decimal)

Operator Symbol Operation Performed Codification
(decimal)

Arithmetic 0 *

/

+

-

%

multiply

divide

add

substract

modulus

0

1

2

3

4

Logical 1 !

&&

||

logical negation

logical and

logical or

0

1

2

Relational 2 >

<

>=

<=

greater than

less than

greater than or equal

less than or equal

0

1

2

3

Equality 3 ==

!=

===

!==

equality

inequality

case equality

case inequality

0

1

2

3

11

Operator Type Codification
(decimal)

Operator Symbol Operation Performed Codification
(decimal)

Bitwise 4 ~

&

|

^

^~

~^

bitwise negation

bitwise and

bitwise or

bitwise xor

bitwise xnor

bitwise xnor (2nd op)

0

1

2

3

4

5

Reduction 5 &

~&

|

~|

^

^~

~^

reduction and

reduction nand

reduction or

reduction nor

reduction xor

reduction xnor (1st op)

reduction xnor (2nd op)

0

1

2

3

4

5

6

Shift 6 >>

<<

right shift

left shift

0

1

Concatenation 7 { } concatenation 0

Replication 8 { { } } replication 0

Conditional 9 ?: conditional 0

Table 2. Decimal Codifications of Operator Types and Symbols

12

The overall codifications in binary are:

Operator Type Codification (binary) Operator Symbol Codification (binary)

Arithmetic 4'b0000 *

/

+

-

%

3'b000

3'b001

3'b010

3'b011

3'b100

Logical 4'b0001 !

&&

||

3'b000

3'b001

3'b010

Relational 4'b0010 >

<

>=

<=

3'b000

3'b001

3'b010

3'b011

Equality 4'b0011 ==

!=

===

!==

3'b000

3'b001

3'b010

3'b011

Bitwise 4'b0100 ~

&

|

^

^~

~^

3'b000

3'b001

3'b010

3'b011

3'b100 (1st op)

3'b101 (2nd op)

13

Operator Type Codification (binary) Operator Symbol Codification (binary)

Reduction 4'b0101 &

~&

|

~|

^

^~

~^

3'b000

3'b001

3'b010

3'b011

3'b100

3'b101 (1st op)

3'b110 (2nd op)

Shift 4'b0110 >>

<<

3'b000

3'b001

Concatenation 4'b0111 { } 3'b000

Replication 4'b1000 { { } } 3'b000

Conditional 4'b1001 ?: 3'b000

Table 3. Overall Binary Codifications of Operator Types and Symbols

2.1.2.6 Output

The output logic takes the ALU result and its parity and, depending on the output
channel that it's selected, activates a signal that shows which is the current active data source
on the output. That signal is valid for one cycle. At the same time with the output channel
validation, output data and parity should be valid on the data bus.

14

3. VERIFICATION

3.1 Verification environment architecture

Fig. 2 – Verification environment architecture for “ALU with selectable inputs and outputs”

15

3.2 Verification environment description

As one can see in the above image, the verification of a circuit (called DUT – Design
Under Test) is done using several verification components, built according to their role.

3.2.1 DUT

DUT is the design itself. In our case, it represents the Verilog code that was used to
create the core with its hierarchy. In DUT are instantiated the modules that compund the
circuit: input logic (SELECTOR), ALU and output logic (DMUX).

3.2.2 Injectors

Also call BFMs (Bus Functional Model), mainly provides input data. They control the
signals that must be sent to the DUT. To simplify things, one can say that the injector of the
present project is 100% active because it only transmits data and it doesn't have waiting times
conditioned by design signals. But in reality, because of complexity of digital circuits, there
are no 100% active injectors or 100% passive injectors. In our case, the injector controlls the
following signals: CLK, RES, STB, SEL, DATA_VALID_IN, DATA_IN_0, DATA_IN_1
and DATA_IN_2.

3.2.3 Monitors

They follow the values of the signals or buses and check if they don't break the rules
described in specifications.

o Ex:
 STB, RES, SEL must not be 'X' or 'Z' during the simultation
 DATA_OUT_0, PARITY_0 must not be 'X' or 'Z' after reset
 DATA_IN[9:0] must not contain invalid data (for ex. 1xx0_zzzz)

3.2.4 Collectors

They follow the input and output of a certain design path and they collect transactions.

16

Depending on what they collect, data are stored in memory/files according to the
structures built based on specifications. Retained data are further transmitted to the checkers
in order to check for differences that may have appeared.

They have 100% knowledge about the communication protocol.

3.2.5 Checkers

They receive data from collectors (in this case from the collectors from the input and
output of the core) and check if output data was matched to input data according to
specifications.

They compare the design's with their result by using their own calculations. Also, they
check for “lost” transactions or for transactions in progress.

They have no knowledge about the communication protocol.

Considering our core, the design verification environment contains:
- an injector that provides input data and values for the control signals
- monitors for all the signals
- one collector for input
- for simplicity, just one collector data outputs; this one will memorize the output

according to the validation signal
- a checker for inadvertencies checking: input vs. output; it will caluclate the result

according to the decoded input bits, the same way as ALU should do it

Transactions' transmitting to the checker will be done using IC_Data_Collected[127:0]
(IC = Input_Collector) and OC_Data_Collected[127:0] (OC = Output_Collector) signals.
Each collector will have a 16 bytes memory. Signalling of a transaction's collection will be
done by asserting the corresponding bit of IC(OC)_Data_Collected[i].

Data will be effectively transmitted using special busses created between collectors
and checker.

The checker will check on every clock if IC_Data_Collected[i] == OC_Data_Collected
[i] == 1. If this condition is true, then it will perform data comparison between the circuit's
input and output.

The circuit should be checked by using both valid (good machine) and invalid (bad
machine) data.

17

One should use two levels of severity: WARNING and ERROR.

3.2.6 Other components

There are other components of a verification environment that are not depicted above.
Such an environment should contain a script for running tests and Makefiles for compiling the
source code.

3.3 Methodologies applied for a design's test

When running tests in order to verify digital designs, there are a few approaches:

3.3.1. Directed tests

They are useful only when verifying small and very small circuits in order to fully
cover all the input and output combinations. It is useful when covering test values that were
not reached in regressions.

3.3.2 Random tests

They are a better solution compared to directed tests because data is generated
randomly. That way, the possibility of introducing into the design transactions the engineer
wasn't thinking about is higher. The amount of code to be written is smaller compared to a
directed test. Ideally, the verification you use should offer a constraint solver for you to create
complex scenarios (constrained randomizations, dependable randomizations, several
randomization phases etc).

3.3.3 Complex/improved tests

Considering the complexity of today's digital circuits, the use of directed tests or
random tests that simplify code for directed tests is not effective. Visually checking of inputs
and outputs is time consuming and inefficient. The need for better tests and automatic ways of
checking a design in obvious.

18

Being given these considerations (there are many more), I created an improved test
that fulfills the above requirements. This test type uses random generated transactions,
instantiates the verification components I talked about (the other tests don't use them at all)
and writes the results into files. I chose to give “.out” extension to the output files in order for
the users to recognize the verification components' logs. You don't need to check only visually
the circuit's behaviour now.

This is the type of test you should use for a proper verification.

19

4. FILES

4.1 List of project's files and directories

List of project's files and directories in alphabetical order:

1. doc
- alu.png
- ASICArt.jpg
- Design_and_verification_env.jpg
- Design_and_verification_env.vsd
- dmux.png
- dut.jpg
- dut.jpg
- dut.vsd
- selector.png
- Spec.sxw
- Spec.pdf
- Spec.doc

2. makefile
- Makefile

3. rtl
- alu.v
- dmux.v
- dut.v
- selector.v

4. run
- checker.out
- clk_gen.out
- clk_monitor.out
- data_in_bfm.out
- data_in_monitor.out

20

- data_out_monitor.out
- data_valid_in_monitor.out
- directed_test.v -> ../tests/directed_test.v
- improved_test.log
- improved_test.v -> ../tests/improved_test.v
- input_collector.out
- Makefile -> ../makefile/Makefile
- output_collector.out
- parity_0_monitor.out
- parity_1_monitor.out
- random_test.v -> ../tests/random_test.v
- res_bfm.out
- res_monitor.out
- RunTest.pl -> ../scripts/RunTest.pl
- sel_monitor.out
- stb_monitor.out
- sv_files -> ../sv_files
- valid_monitor.out
- verilog.log
- waves

- waves_directed_test
- waves_improved_test
- waves_random_test

5. scripts
- *RunTest.pl

6. sv_files
- simvision_directed_test.sv
- simvision_improved_test.sv
- simvision_random_test.sv

7. tests
- directed_test.v
- improved_test.v
- random_test.v

21

8. verif_env
1. bfms

- clk_gen.v
- data_in_bfm.v
- res_bfm.v

2. checker
- checker.v

3. collectors
- input_collector.v
- output_collector.v

4. monitors
- clk_monitor.v
- data_in_monitor.v
- data_out_monitor.v
- data_valid_in_monitor.v
- parity_monitor.v
- res_monitor.v
- sel_monitor.v
- stb_monitor.v
- valid_monitor.v

22

5. RUNNING THE PROJECT

Before actually running the test, you may have to do these things first:
– specify for your operating system where the Verilog simulator executable file is
– modify in makefile/Makefile the RUN_COMMAND variable, depending on the name of

your Verilog simulator

1. Create a separate directory for this project
2. cd <work_dir>
3. cd run – enter the “run” directory of the project
4. RunTest.pl <test_name> - it may be directed_test.v, random_test.v or improved_test.v
5. look at .log files or .out files - depending on which type of test you ran - using a text viewer

23

6. EXAMPLE WAVEFORMS

For a better visualization of the waveforms, please look at the .png files located in the
“doc” directory of the project.

6.1 SELECTOR

Fig. 3 – SELECTOR module waveforms

24

6.2 ALU

Fig. 4 – ALU module waveforms

25

6.3 DMUX

Fig. 5 – DMUX module waveforms

26

7. EXERCISES

The exercises I propose may also be considered future steps in improving this project:

1. Make the circuit work with any number of operands for operations like Concatenation and
Replication

2. Modify the existing verification environment so one can run tests with a user given seed.
3. Build a regression script in Perl to run different random test types with different random

seeds.

27

8. REFERENCES

1. Palnitkar, Samir - “Verilog HDL – A Guide to Digital Design and Synthesis”
2. http://www.hsrl.rutgers.edu/ug/make_help.html

28

9. ERRATA

29

