Synthesis and Scripting Techniquesfor Designing Multi-
Asynchronous Clock Designs

SNUG-2001
San Jose, CA
Voted Best Paper
3rd Place

Clifford E. Cummings

Sunburst Design, Inc.

ABSTRACT

Designing a pure, one-clock synchronous design is aluxury that few ASIC designerswill ever
know. Most of the ASICsthat are ever designed are driven by multiple asynchronous clocks and
require special data, control-signal and verification handling to insure the timely completion of a
robust working design.

1.0 Introduction

Most college courses teach engineering students prescribed techniques for designing completely
synchronous (single clock) logic. In the real ASIC design world, there are very few single clock
designs. This paper will detail some of the hardware design, timing analysis, synthesis and
simulation methodol ogies to address multi-clock designs.

This paper is not intended to provide exhaustive coverage of thistopic, but is presented to share
techniques learned from experience.

2.0 Metastability

Quoting from Dally and Poulton's book[1] concerning metastability:

"When sampling a changing data signal with aclock ... the order of the events
determines the outcome. The smaller the time difference between the events, the
longer it takes to determine which came first. When two events occur very close
together, the decision process can take longer than the time allotted, and a
synchronization failure occurs.”

Only one
synchronizing flip-flop

aclkis

asynchronous adat bdat1
to belk dat

Dat
TL | TX | | |/|/|/_/” char?g?ng

belk samples adat
while it is changing

\(
I

]

v
«— ... and might still be
o

bdat1 A metastable at the next

rising edge of belk

Clocked signal is
initially metastable ...

Figure 1 - Asynchronous clocks and synchronization failure

SNUG San Jose 2001 2 Synthesis and Scripting Techniques for
Rev 1.1 Designing Multi-Asynchronous Clock Designs

Figure 1 shows a synchronization failure that occurs when a signal generated in one clock
domain is sampled too close to the rising edge of a clock signal from another clock domain.

Synchronization failure is caused by an output going metastable and not converging to alegal
stable state by the time the output must be sampled again. Figure 2 shows that a metastable
output can causeillegal signal values to be propagated throughout the rest of the design.

//

invalid data propagated
throughout the design

adat bdat1

7

dat

Sampling aclk _,_ ’(

clock bclk

YRS I o o s N B

changing
adat

;

|
\\
i

Clocked signal is
initially metastable
{ | and is still meta-
v i/ stable on the next
active clock edge

Other logic output values
are indeterminate

Figure 2 - Metastable bdat 1 output propagating invalid data throughout the design

<

bclk] |

bdat1

Every flip-flop that is used in any design has a specified setup and hold time, or the time in which
the datainput is not legally permitted to change before and after arising clock edge. Thistime
window is specified as a design parameter precisely to keep a data signal from changing too close
to another synchronizing signal that could cause the output to go metastable.

The metastable output problem shown in Figure 2 is sometimes known as the John Cooley
ESNUG effect, or in other words, the propagation of unwanted information!
(Just kidding, John! ©)

SNUG San Jose 2001 3 Synthesis and Scripting Techniques for
Rev 1.1 Designing Multi-Asynchronous Clock Designs

3.0 Synchronizers

Quoting again from Dally and Poulton[2] concerning synchronizers:

"A synchronizer is adevice that samples an asynchronous signal and outputs aversion
of the signal that has transitions synchronized to alocal or sample clock."

The most common synchronizer used by digital designersis atwo-flip-flop synchronizer as
shown in Figure 3.

%

adat bdat1l bdat2

;i

adat
changing

i

Clocked signal is
initially metastable
but goes "high"
before the next
active clock edge

bdat2 /‘/ \ «—— bdatz2 is synchronized

and valid

|

Figure 3 - Two flip-flop synchronizer

Thefirst flip-flop samples the asynchronous input signal into the new clock domain and waits for
afull clock cycle to permit any metastability on the stage-1 output signal to decay, then the stage-
1 signal is sampled by the same clock into a second stage flip-flop, with the intended goal that
the stage-2 signal is now a stable and valid signal synchronized into the new clock domain.

It istheoretically possible for the stage-1 signal to still be sufficiently metastable by the time the
signal is clocked into the second stage to cause the stage-2 signal to also go metastable. The
calculation of the probability of the time between synchronization failures (MTBF) isafunction
of multiple variables including the clock frequencies used to generate the input signal and to
clock the synchronizing flip-flops. One description of the MTBF calculation can be found in
Dally and Poulton[3].

For most synchronization applications, the two flip-flop synchronizer is sufficient to remove all
likely metastability.

SNUG San Jose 2001 4 Synthesis and Scripting Techniques for
Rev 1.1 Designing Multi-Asynchronous Clock Designs

4.0 Static Timing Analysis

Performing static timing analysis is the process of verifying that every signal path in adesign
meets required clock-cycle timing, whether or not all of the signal paths are even possible. Static
timing analysisis not used to verify the functionality of the design, only that the design meets
timing goals. In theory, timing verification could be accomplished by running exhaustive gate-
level simulations with SDF backannotation of actual timing values after adesign is placed and
routed. Thisis often referred to as dynamic timing verification.

Static timing analysis has three principa advantages over dynamic timing verification: (1) static
timing analysistools verify every single path between any two sequential elements, (2) static
timing analysis does not require the generation of any test vectors, and (3) static timing analysis
tools are orders of magnitude faster than trying to do timing verification running exhaustive gate-
level ssimulationg[4].

Timing analysis using Synopsys tools on a completely synchronous design is relatively easy to
perform using either DesignTime within the Synopsys Design Compiler or Design Analyzer
environments, or by using PrimeTime.

Timing analysis on modules with two or more asynchronous clocksis error prone, more difficult
and can be time consuming. Static timing analysis on signals generated from one clock domain
and latched into sequential elements within a second, asynchronous clock domain isinaccurate
and for the most part worthless. The timing information for asignal latched by aclock that is
asynchronous to the latched signal is inaccurate because the phase relationship between the

signal and the asynchronous clock is always changing; therefore, the static timing analysis tool
would have to check an infinite number of phase rel ationships between the signal and
asynchronous clock. The fact is, one must assume that signals that pass from one clock domain to
another at some point will violate either setup or hold times on the destination sequential

element.

There is no good reason to perform timing analysis on signals that are generated in one clock
domain and registered in another asynchronous clock domain. It is a given that these signals DO
violate setup and hold times on the destination register. Thisiswhy synchronizers (see section
3.0) are needed, to aleviate the problems that can occur when a signal is passed from one clock
domain to another.

For RTL modules that have two or more asynchronous clocks as inputs, a designer will be
required to indicate to the static timing analysis tool which signal paths should be ignored. This
is accomplished by "setting false paths' on signals that cross from one clock domain to another.
This can be atedious and error prone job unless the guidelines in the next two sections are
followed.

SNUG San Jose 2001 5 Synthesis and Scripting Techniques for
Rev 1.1 Designing Multi-Asynchronous Clock Designs

5.0 Clock Naming Conventions

Guiddine: Use aclock naming convention to identify the clock source of every signal ina
design.

Reason: A naming convention helps al team membersto identify the clock domain for every
signal in a design and also makes grouping of signals for timing analysis easier to do using
regular expression "wild-carding" from within a synthesis script.

A number of useful clock naming conventions have been used by various design teams. One that
was used by design engineersin 1995 while designing video ASICs for In Focus projectors
required that aleading prefix character be used to identify the various asynchronous clock
domains. Examples included: uClk for the microprocessor clock, vClk for the video clock and
dClk for the display clock.

Each signal was synchronized to one of the clock domains in the design and each signal-name
had to include a prefix character identifying the clock domain for that signal. Any signal that was
clocked by the uClk would have a u-prefix in the signal name, such as uaddr, udata, uwrite, etc.
Any signal that was clocked by the vClk would similarly have a v-prefix in the signal name, such
as vdata, vhsync, vframe, etc. The same signal naming convention was used for all signals
generated by any of the other clocks in the design.

Using this technique, any engineer on the ASIC design team could easily identify the clock-
domain source of any signal in the design and either use the signals directly or passthe signals
through a synchronizer so that they could be used within a new clock domain.

The naming convention alone contributed significantly to the productivity of the design team.
How do we know there was a productivity gain? One of the design engineers started his part of
the ASIC design using his own naming convention, ignoring the convention in use by the other
design team members. After much confusion about the signals entering and leaving his design
partition, ateam meeting was called and the non-compliant designer was "strongly encouraged"
to rename the signals in his part of the design to conform to the team naming convention. After
the signal names were changed, it became easier to interface to the partition in question. Fewer
guestions and less confusions occurred after the change.

6.0 Design Partitioning

Guiddine: Only allow one clock per module.
Reason: Static timing analysis and creating synthesis scripts is more easily accomplished on
single-clock modules or groups of single-clock modules.

Guiddine: Create a synchronizer module for each set of signals that pass from just one clock
domain into another clock domain.

Reason: It isgiven that any signal passing from one clock domain to another clock domainis
going to have setup and hold time problems. No worst-case (max time) timing analysisis
required for synchronizer modules. Only best case (min time) timing analysisis required between

SNUG San Jose 2001 6 Synthesis and Scripting Techniques for
Rev 1.1 Designing Multi-Asynchronous Clock Designs

first and second stage flip-flops to ensure that all hold times are met. Also, gate-level simulations
can more easily be configured to ignore setup and hold time violations on the first stage of each
synchronizer.

bSig0
* asig2
asigo aClk Logic asSigl asig1 | sync_ bClk Logic bSigl
. azb
bSig1 | Sync_ bSigo
b2a
cSigl SyzC_ I cSig2 Syzﬁ_ I
cZa ,— C

Each non-

synchronizer asig3 | Sync_ cClk Logic [csig1 Simple to
module is now

perform static
timing analysis
for each clock

completely

synchronous to I

just one clock bSig2

cSig3

cSig0 cSig0

\4

4

Figure 4 - Design partitioned on clock boundaries

In 1995, while working on a multi-asynchronous-clock ASIC design to be used in In Focus
projectors, | received an e-mail message from Steve Golson in which he gave me the strong
recommendation to only allow one clock per module for each module in the ASIC design[5]. At
that time we were permitting multiple clocks per module and trying to handle timing analysis by
including alarge number of set_false path commands in our synthesis scripts to eliminate invalid
timing-error messages.

After giving consideration to Steve's recommendation, | decided to completely re-partition the
ASIC design | was working on and to adhere to the recommendation to only permit one clock per
module. | took atwo-week hit to my schedule to re-partition the entire ASIC. After repartitioning
the design, many of the timing analysis and synthesis tasks became trivial.

By partitioning a design to permit only one clock per module, static timing analysis becomes a
significantly easier task.

The next logical step wasto partition the design so that every input module signal was already
synchronized to the same clock domain before entering the module. Why is this significant? If all
signals entering and leaving the modul e are synchronous to the clock used in the module, the
design is now completely synchronous! Now the entire module can be static timing analyzed

SNUG San Jose 2001 7 Synthesis and Scripting Techniques for
Rev 1.1 Designing Multi-Asynchronous Clock Designs

without any "false paths' and Design Compiler can be used to "group™ all of the same-clock
synchronous modules to perform compl ete, sequential static timing analysis within each clock
domain.

There is one exception to the above recommendation. Multi-clock designs require at least some
RTL modules to pass signals from one clock domain to modules that are clocked within a
different clock domain. For the In Focus ASIC designs, we created separate synchronizer
modules that permitted signals from one and only one clock domain to be passed into a module
that synchronized the signalsinto a new clock domain.

Using the naming convention described in section 5.0, all processor-clock generated signals (u-
signals) would be used as inputs to a module that might be clocked by the video clock. This
module was called the "sync_u2v" module and the RTL code did nothing more than take each u-
signal input and run it through a pair of flip-flops clocked by vClk. Aside from the vClk and
reset inputs, every other input signal to the "sync_u2v" module had a"u" prefix and every output
signal from that same module had a"v" prefix.

No worst-case timing analysisis required on the "sync" modules because we know that every
input signal to these modules will have timing problems; otherwise, we would not have to pass
the signals through synchronizers. The only timing analysis that we need to perform within
synchronizer modules is min-time (hold time) analysis between the first and second flip-flop
stages for each signal.

In generd, if there are n asynchronous clock domains, the design will require n(n-1)
synchronizer modules, two for each pair of clock signals (example: using the uClk and vClk
signals: the two synchronizer modules required would be sync_u2v and sync_v2u). Only if there
are no signals that pass between two specific clock domains will a pair of synchronizer modules
not be required.

By the way, what happened to that repartitioned In Focus ASIC design? After modifying all of
the RTL filesto create either completely synchronous modules or synchronizer modules, the task
of generating synthesis scripts becametrivial. All of the script files which previously included
"set false path" commands were either deleted or significantly simplified. All timing problems
were easily identified and fixed (because they were all within single-clock domain groupings)
and the final synthesis runs completed two weeks earlier than anticipated, putting the project
back on schedule and completely justifying the decision to repartition the design.

7.0 Synthesis Scripts & Timing Analysis

Following the guidelines of section 6.0, to only permit one clock per module, to require that all
signal s entering non-synchronizer modules are also in the same clock domain that is used to
clock that module and to require that synchronizer modules only permit input signals from one
other clock domain, helps to simplify the timing analysis and synthesis scripting tasks associated
with amulti-clock design.

SNUG San Jose 2001 8 Synthesis and Scripting Techniques for
Rev 1.1 Designing Multi-Asynchronous Clock Designs

Synthesis script commands used to address multiple clock domain issues now become a matter of
grouping, identifying false paths and performing min-max timing analysis.

7.1 Grouping

Group together al non-synchronizer modules that are clocked within each clock domain. One
group should be formed for each clock domain in the design. These groups will be timing
verified asif each were a separate, completely synchronous design.

7.2 Identifying False Paths

In general, only the inputs to the synchronizer modules require "set_false path" commands. If a
clock-prefix naming scheme is used (see section 5.0), then wild-cards can be used to easily
identify all asynchronous inputs. For example, the sync_u2v module should have inputs that all
start with the letter "u". The following dc_shell command should be sufficient to eliminate all
asynchronous inputs from timing analysis.

set false path -from { u* }
7.3 Performing Min-Max Timing Analysis

Each grouped set of modules for each clock domain is now a completely synchronous sub-design
and tools such as DesignTime or PrimeTime can be used to verify worst case timing (including
setup time checks) and best case timing (including hold time checks).

The synchronizer blocks are timing verified separately. Worst case timing checks are not
required because these modules are just composed of flip-flops to synchronize asynchronous
input signals; therefore, there are no long path delays and the outputs are fully registered. After
setting false paths on all of the asynchronous inputs, best case (minimum) timing verification is
conducted to insure that hold times are met on all signals that are passed from the first to second
stage synchronizing flip-flops.

8.0 Synchronizing Fast Signals Into Slow Clock Domains

A general problem associated with synchronizersis the problem that a signal from a sending
clock domain might change values twice before it can be sampled into a slower clock domain.
This problem must be considered any time signals are sent from one clock domain to another.

Synchronizing slower control signalsinto afaster clock domain is generally not a problem since
the faster clock signal will sample the slower control signal one or more times. Recognizing that
sampling slower signalsinto faster clock domains causes fewer potential problems than sampling
faster signalsinto slower clock domains, a designer might want to take advantage of this fact and
try to steer control signals towards faster clock domains.

SNUG San Jose 2001 9 Synthesis and Scripting Techniques for
Rev 1.1 Designing Multi-Asynchronous Clock Designs

8.1 Passing A Slow Control Signal

When passing one control signal between clock domains, a simple two-flip-flop synchronizer is
typically sufficient if other rules are followed (described below).

An exception to this rule occurs when trying to pass a control signal from afaster clock domain
to aslower clock domain, the control signal must be wider than the cycle time of the slower
clock. If the control signal is only asserted for one fast-clock cycle, the control signal could go
high and low between the rising edges of a slower clock and not be captured into the slower
clock domain as shownin Figure 5.

The adat signal is asserted

— aclk I | | | and de-asserted between the
This will two rising edges of belk

cause
problems! J adat I/ \I

bdat1

bdat2 /

Figure 5 - Short control signal pulse missed during synchronization

bdatl and bdat2
are never asserted

One potential solution to this problem isto assert control signals for a period of time that exceeds
the cycle time of the sampling clock as shown in Figure 6. The assumption is that the control
signal will be sampled at least once and possibly twice by the receiver clock.

This pulse must
aclk K be wider than

_ -] one belk period!
acat WJ I \

I This insures that

balk adat is propagated

to bdatl and bdat2

bdat1

bdat2 / il \—

Figure 6 - Lengthened pulse to guarantee that the control signal will be sampled

SNUG San Jose 2001 10 Synthesis and Scripting Techniques for
Rev 1.1 Designing Multi-Asynchronous Clock Designs

A second potential solution to this problem isto assert a control signal, synchronize it into the
new clock domain and then pass the synchronized signal back through another synchronizer into
the sending clock domain as an acknowledge signal. Although synchronizing a feedback signal is
avery safe technique to acknowledge that the first control signal was recognized and sampled
into the new clock domain, there is considerable delay associated with synchronizing control
signals in both directions before releasing the control signal[6].

bdat1 bdat2

Figure 7 - Feedback synchronization of a control signal

9.0 Passing M ultiple Control Signals

A frequent mistake made by engineers when working on multi-clock designsis passing multiple
control signals from one clock domain to another and overlooking the importance of the
sequencing of the control signals. Simply using synchronizers on all control signalsis not aways
good enough as will be shown in the following examples.

If the order or alignment of the control signalsis significant, care must be taken to correctly pass
the signals into the new clock domain. All of the examples shown in this section are overly
simplistic but they closely mimic situations that often arisein real designs.

9.1 Problem - Two simultaneously required control signals.

In the simple example shown in Figure 8, aregister in the new clock domain requires both aload
signal and an enable signal in order to load a data value into the register. If both the load and
enable signals are being sent from one clock domain, there is a chance that a small skew between
the control signals could cause the two signals to be synchronized into different clock cycles
within the new clock domain. In this example, this would cause the data to the register to not be
loaded.

SNUG San Jose 2001 11 Synthesis and Scripting Techniques for
Rev 1.1 Designing Multi-Asynchronous Clock Designs

Small skew between
control signals

aclk

b_load

"load" but no "enable"

Synchronizing aclk

"enable" but no "load"

ab load /ab_en

aClk
domain

______________________________>

_____________________________________.>

/

FF

Only one
control signal

Synthesis and Scripting Techniques for
Designing Multi-Asynchronous Clock Designs

adata was not loaded

adata is loaded

12

Synchronizing aclk

aClk
domain

Consolidating control signals before passing them between clock domains

Problem - Passing multiple control signals between clock domains

ab_lden

Figure 8 -
_____________________________>
Solution -

_____________________________________.>

/

Synchronizer

Synchronizers

Figure 9

4_-_-_-_-
SNUG San Jose 2001

Rev 1.1

The solution to the problem in this simple example is easy. As shown in Figure 9, drive both the
load and enabl e register input signals in the new clock domain from just one control signal. This
will remove the potential for the control signals arriving shifted in time.

9.2 Problem - Two phase-shifted sequencing control signals.

The diagram in Figure 10, shows two enable signals, aenl and aen2, that are used to enable the
sequential passing of a data signal through a short pipeline design. The problem isthat in the first
clock domain, the aenl control signal might terminate slightly before the aen2 control signal is
asserted, and the second clock domain might try to sample the aenl and aen2 control signalsin
the middle of this dlight time gap, causing a one-cycle gap to form in the enable control-signal
chain in the second clock domain. This would cause the a2 output signal to be missed by the
second flip-flop.

Small skew between
control signals

Synchronizing aclk !

ak [L

ab enl i_ ! ! !
ab_enz | . p——_

s
ikl B B =

2nd enable signal is too late i i

al "

@ | | /o .
Synchronizers' a3 ! :

a3 was not loaded

Figure 10 - Problem - Passing sequentia control signals between clock domains

The solution to the problem, as shown in Figure 11, isto send only one control signa into the
new clock domain and generate the second phase-shifted sequential control signal within the new
clock domain.

SNUG San Jose 2001 13 Synthesis and Scripting Techniques for
Rev 1.1 Designing Multi-Asynchronous Clock Designs

Only one
control signal

]

benl

'l aClk

Figure 11 - Solution - Logic to generate the proper sequencing signals in the new clock domains

9.3 Problem - Two encoded control signals.

_____________________________________ .>
ab_dec[1:0]

'/ adec[1]
L
L

aen[3]
bdec[1] !

aen[2]

bdec([0] aen[1]

aen[0]

Synchronizers I

WRONG!

be asserted

aen[2] should not

. bdec=0, bdec=3 | |
bdecft) | A |
bdec[0] ! : : : \ﬂ

ok L] L
N I ———
ab_dec[0] ! s —

accl1] —
adec[0] ! ! i]

aen[0] aen[O/]vE aen[2] aen[3]
sen[3] ! ; ! —

/

|

ﬁ

Figure 12 - Problem - Encoded control signals passed between clock domains

SNUG San Jose 2001 14
Rev 1.1

Synthesis and Scripting Techniques for
Designing Multi-Asynchronous Clock Designs

The diagram in Figure 12 shows two encoded control signals being passed between clock
domains. If the two encoded signals are slightly skewed when sampled, an erroneous decoded
output could be generated for one clock period in the new clock domain.

One potential solution to this problem, as shown in Figure 13, is to send a shaped enable signal
to act asa"ready flag" in the new clock domain. The sending clock domain must generate and
enable signal one clock cycle after asserting the decoder inputs. The sending clock domain must
also remove the enable signal one clock cycle before de-asserting the decoder inputs. As
described earlier, the enable signal must be asserted for atime period that is longer than the cycle
time of the receiving clock domain.

. bdec=0 ., bdec=3 .
bdec[1] i _
bdec[0] ' : L
bden n | | _:
R g | | :
1 : ab_deC[l:O] aclk I | I | I | | |
| 3]
! ,/ | 2en(3] o ded 1] ;
poeclilyy fedeeil) | aenta) b ded —t i
bdec[0] 1! _EI:E adec[0] aen[1] @b denn | !
T o—— : . e
bd & aen[0] | 0 | i i
en_n ;I aden_n b—— ec[1] | —
otk ! ! aClk adenn 5 | =
l | g
domain| : aen[3) | 1V \aen[3]

P (off) |

Shaped enable

| T |
pulse '

aen[0] "17 (off) !

Synchronizers I

Figure 13 - Solution #1 - Logic to synchronize and wave-shape an enable pulse to pass between clock domains

Under worst case conditions, the shaped enable signal will either be sampled at the sametime as
the encoded inputs are sampled into the receiving clock domain, or the shaped enable signal will
be de-asserted at the same time as the encoded inputs are de-asserted in the receiving clock
domain. Under best case conditions, the shaped enable pulse will be asserted one receiving clock
cycle later than the assertion of the encoded inputs and de-asserted one receiving clock cycle
before the de-assertion of the encoded inputs. This method insures that the encoded inputs are
valid before they are enabled into the receiving clock domain.

A second potential solution to this problem, as shown in Figure 14, isto decode the signals back
in the sending clock domain and then send the decoded outputs (where only one of the outputsis
asserted) through synchronizers into the new clock domain. Within the new clock domain, a state
machine is used to determine when a new decoded output has been asserted. If there are no
decoded outputs, it means that one decoded output has been de-asserted and that another decoded

SNUG San Jose 2001 15 Synthesis and Scripting Techniques for
Rev 1.1 Designing Multi-Asynchronous Clock Designs

output is about to be asserted. If there are two asserted decoded output signals, the last decoded
output signal will cause the state machine to change states and the older decoded output signal
will turn off on the next rising clock edge in the new clock domain. It isimportant that the sender
insure that the decoded outputs are each asserted for atime period that islonger than the cycle
time of the receiving clock domain.

[F———— = - —— >
-—————————= : Except where noted, the following outputs
2 . are driven to the default, de-asserted state:
: | ab— en[3.0] a_sel3=1, a_sel2=1, a_sell=1, a_sel0=1
1
ben[3]! 1 — 1 aen[3] larst_n Jaen(0] a_sel3
L] laen[3 -aen
—bdec[l] ben[2]| |1, aen[2?] ENO a_sel2
I a | G_>C &
bdec|[0] ben[1]| |1 : | |aen[1] taen(0] fa_sel0 /™\Jaenl] a_sell
1
ben[0]| |i : || [aen[O] laen[2] a_sel0
1y laen[1l
1 u EN3 EN1
| T a & la_sel3 la_sell
bClk | 1| aCIk[o - Taen[3]__
b — - taen[0]
raen
: 1 | Synchronizers I raent?]
1 laen(3 EN2
bClk ! aClk PN (aeer)T reenit
domain 1, domain taent2
- -- T e e T >

Figure 14 - Solution #2 - FSM logic to detect one-hot control signals passed from a different clock domain

Any time there are multiple control signals crossing clock boundaries, caution must be taken to
insure that the sequencing of the control signals being passed is correct or that any potential mis-
sequencing of the control signals will not adversely impact the correct operation of the design.

10.0 Data-Path Synchronization

Passing data from one clock domain to another is an example of passing multiple randomly
changing signals between clock domains. Using synchronizers to handle the passing of datais
generally unacceptable. There are far too many opportunities for multi-bit data changes to be
incorrectly sampled using synchronizers.

Two common methods for synchronizing data between clock domains are: (1) use handshake
signals to pass data between clock domains or, (2) use FIFOs (First In First Out memories) to
store data using one clock domain and to retrieve data using another clock domain.

10.1 Handshaking Data Between Clock Domains
Data can be passed between clock domains using two or three handshake control signals,
depending on the application and the paranoia of the design engineer. When it comes to

handshaking, the more control signals that are used, the longer the latency to pass data from one

SNUG San Jose 2001 16 Synthesis and Scripting Techniques for
Rev 1.1 Designing Multi-Asynchronous Clock Designs

clock domain to another. The biggest disadvantage to using handshaking is the latency required
to pass and recognize all of the handshaking signals for each dataword that is transferred.

For many open-ended data-passing applications, a simple two-line handshaking sequence is
sufficient. The sender places data onto a data bus and then synchronizes a"data valid" signal to
the receiving clock domain. When the "data_valid" signal is recognized in the new clock domain,
the receiver clocks the datainto aregister in the new clock domain (the data should have been
stable for at least two rising clock edges in the sending clock domain) and then passes an
"acknowledge" signal through a synchronizer to the sender. When the sender recognizes the
synchronized "acknowledge" signal, the sender can change the value being driven onto the data
bus.

Under some circumstances, it might be useful to use athird control signal, "ready", sent through
a synchronizer from the receiver to the sender to indicate that the receiver isindeed "ready” to
receive data. The "ready” signal should not be asserted while the "data valid" signal istrue.
When the "data valid" signal is de-asserted, a "ready" signal can be passed to the sender. Of
course, with the added handshake signal comes the penalty of longer latency to synchronize and
recognize the third control signal.

10.2 Passing Data By FIFO Between Clock Domains

One of the most popular methods of passing data between clock domainsisto use a FIFO. A dual
port memory is used for the FIFO storage. One port is controlled by the sender which puts data
into the memory as fast a one data word (or one data bit for serial applications) per write clock.
The other port is controlled by the receiver, which pulls data out of memory one data word per
read clock. Two control signals are used to indicate if the FIFO is empty, full or partially full.
Two additional control signals are frequently used to indicate if the FIFO is amost full or almost
empty.

In theory, placing datainto a shared memory with one clock and removing the data from the
shared memory with another clock seems like an easy and ideal solution to passing data between
clock domains. For the most part it is, but generating accurate full and empty flags can be
challenging.

10.3 FIFO Full & Empty

Determining that a FIFO isfull or empty requires some type of mathematical manipulation
and/or comparison of write and read pointers. The problem is that the two pointers are generated
in two different clock domains, so one or both pointers must be synchronized into the opposite
clock domain before mathematical and comparison operations can be safely performed.

10.4 FIFO Pointers- Implemented as Binary Counters

Any FIFO pointer that must be synchronized into a different clock domain should not be
implemented as a binary counter.

SNUG San Jose 2001 17 Synthesis and Scripting Techniques for
Rev 1.1 Designing Multi-Asynchronous Clock Designs

One characteristic of binary countersisthat half of al sequential binary incrementing operations
require that two or more counter bits must change. Trying to synchronize a binary counter into a
new clock domain is more problematic than trying to synchronize multiple control signalsinto a
new clock domain. If asimple 4-bit binary counter changes from address 7 (binary 0111) to
address 8 (binary 1000), all four counter bits will change at the same time. If a synchronizing
clock edge comes in the middle of thistransition, it is possible that any 4-bit binary pattern could
be sampled and synchronized into the new clock domain as shown in Figure 15.

Binary Count 07 -> 08 possible binary transitions

Values 0111 -> 1000 (07->08)
00 0000 0111 -> 0O0O0O0 (07->00)
01 0001 0111 -> 0001 (07->01)
02 0010 0111 -> 0010 (07->02)
03 0011 0111 -> 0011 (07->03)
04 0100 0111 -> 0100 (07->04)
05 0101 0111 -> 0101 (07->05)
06 0110 0111 -> 0110 (07->06)
07 0111 0111 -> 0111 (07->07)
081 000 0111 -> 1000 (07->08)
091001 0111 -> 1001 (07->09)
101 010 0111 -> 1010 (07->10)
11 1 0 11 0111 -> 1011 (07->11)
121100 0111 -> 1100 (07->12)
131101 0111 -> 1101 (07->13)
14 1 110 0111 -> 1110 (07->14)
151111 0111 -> 1111 (07->15)

Figure 15 - Binary count values sampled in mid-transition

The new, synchronized binary value might trigger afalse full or empty flag, or even worse, it
might not trigger areal full or empty flag causing data to be lost due to FIFO overflow or causing
bogus data to be read from the FIFO due to attempting to read data when the FIFO isreally
empty.

10.5 FIFO Pointers- Implemented as Gray-Code Counters

Although binary counters work fine for addressing the memory, trying to synchronize binary
counters into a new clock domain is problematic. A better approach for passing pointers between
clock domainsisto use a gray-code counter for the two FIFO pointers. Gray code counters only
change one bit at atime. If a synchronizing clock signal comesin the middle of agray code
counter transition, the synchronized value will either be the old value or the new value because
only one bit is changing at atime.

SNUG San Jose 2001 18 Synthesis and Scripting Techniques for
Rev 1.1 Designing Multi-Asynchronous Clock Designs

10.6 Designing Gray Code Counters

A block diagram for a gray-code counter is shown in Figure 16. To design agray code counter, a
register is used to store the gray code values. The register output is fed back to a gray-to-binary
converter, the binary value is incremented by one, the incremented binary value is then passed to
a binary-to-gray converter that drives the inputs to the gray-code register.

One line
of code

One line of code
with concatenations

For-loop with two
lines of code

gray

inc
clk
rst_n

The gray and
binary values
increment only
if inc is high

The bnext output is
the binary value +1
(if inc is high)

Figure 16 - Gray-code counter block diagram

10.7 Gray To Binary Conversion

To convert a gray-code value to an equivalent binary-code value, using an n-bit gray code value
as an example, binary bit 0 is equal to the exclusive-or of gray code bit 0 exclusive-ored with all
other gray code bitsfrom 1 to n. Binary bit 1 isequal gray code bit 1 exclusive-ored with all
other gray code bits from 2 to n, etc. The most significant binary bit is just equal to the most
significant gray code bit. The equations for a 4-bit gray-to-binary conversion are shown in Figure
17.

bin[0] = gray[3] * grayl[2] * grayll]l * grayl0]l;
bin[l] = gray[3] * grayl[2] * grayll];

bin[2] = grayl[3] * grayl2];

bin[3] = grayl[3];

Figure 17 - 4-bit gray-to-binary conversion equations

The easiest way to code a gray-to-binary converter isto code afor-loop and do an exclusive-or
reduction on a gray code vector with variable index range, where each time through the loop the

SNUG San Jose 2001 19 Synthesis and Scripting Techniques for
Rev 1.1 Designing Multi-Asynchronous Clock Designs

LSB of the index range increases until we are left with a simple assignment of bin[MSB] =
gray[MSB:MSB] (just the 1-bit MSB of the gray code vector), as shown in Example 1.

module gray2bin bad (bin, gray):;
parameter SIZE = 4;
output [SIZE-1:0] bin;
input [SIZE-1:0] gray:
reg [SIZE-1:0] bin;
integer i;

// Syntax Error - variable index range
always @(gray)
for (i=0; i<SIZE; i=i+l)
bin[i] = " (gray[SIzE-1:il);
endmodule

Example 1 - Non-working but conceptually correct gray-to-binary Verilog model

Unfortunately, Verilog does not permit part selects using a variable index range so the codein
Example 1, although conceptually correct, will not compile.

Another way to think of a gray-to-binary conversion isto exclusive-or the significant gray-code
bits with padded O's as shown in Figure 18.

bin[0] = grayl[3] * grayl[2] * grayl[ll * grayl0] ; // gray>>0
bin[l] = 1'b0 * grayl3] *~ grayl[2] * grayl[l]l ; // gray>>1l
bin[2] = 1'b0 * 1'b0 * grayl3] * grayl2] ; // gray>>2
bin[3] = 1'b0 * 1'b0 * 1'b0 * grayl3] ; // gray>>3

Figure 18 - 4-bit gray-to-binary conversion equations - 2nd method

The corresponding parameterized Verilog model for this algorithm is shown in Example 2. This
exampleis syntactically correct, will compile and does work.

module gray2bin (bin, gray):
parameter SIZE = 4;
output [SIZE-1:0] bin;
input [SIZE-1:0] gray:
reg [SIZE-1:0] bin;
integer i;
always @(gray)
for (i=0; i<SIZE; i=i+1)
bin[i] = “(gray>>i);
endmodule

Example 2 - Parameterized and correct gray-to-binary Verilog model

10.8 Binary To Gray Conversion

To convert abinary value to an equivalent gray-code value, using an n-bit binary value as an
example, gray-code bit 0 is equal to the exclusive-or of binary bits 0 and 1. Gray-code bit 1 is

SNUG San Jose 2001 20 Synthesis and Scripting Techniques for
Rev 1.1 Designing Multi-Asynchronous Clock Designs

equal to the exclusive-or of binary bits 1 and 2, etc. The most significant gray-code bit is just
equal to the most significant binary bit. The equations for a 4-bit binary-to-gray conversion are
shown in Figure 19.

bin[0] = grayl[0] * grayll]l:;
bin[l] = grayl[l]l * grayl2]:;
bin[2] = grayl[2] * grayl3];
bin[3] = grayl[3]:;

Figure 19 - 4-bit binary-to-gray conversion eguations

The easiest way to code a binary-to-gray converter isto code a simple continuous assignment that
performs a bit-wise exclusive-or operation between the binary vector and a right-shifted version
of the same binary vector as shown in Example 3. This exampleis syntactically correct, will
compile and does work.

module bin2gray (gray, bin);
parameter SIZE = 4;
output [SIZE-1:0] gray:
input [SIZE-1:0] bin;

A

assign gray = (bin>>1) bin;

endmodule

Example 3 - Parameterized binary-to-gray Verilog model

10.9 Gray Code Counter

The Verilog code for a gray-code counter incorporates a gray-to-binary converter, a binary-to-
gray converter and increments the binary value between conversions. The parameterized Verilog
model for the gray-code counter is shown in Example 4.

module graycntr (gray, clk, inc, rst n);
parameter SIZE = 4;
output [SIZE-1:0] gray:

input clk, inc, rst n;
reg [SIZE-1:0] gnext, gray, bnext, bin;
integer i;

always @(posedge clk or negedge rst n)
if (!rst n) gray <= 0;
else gray <= gnext;

always @(gray or inc) begin
for (i=0; i<SIZE; i=i+1)

bin[i] = *(gray>>i);
bnext = bin + inc;
gnext = (bnext>>1) ”~ bnext;
end
endmodule
Example 4 - Parameterized gray-code counter Verilog model
SNUG San Jose 2001 21 Synthesis and Scripting Techniques for

Rev 1.1 Designing Multi-Asynchronous Clock Designs

11.0 FIFO Design

When passing data between two different clock domains, FIFOs, or First-In, First-Out memories,
are the design-block of choice for most engineers. Figure 20 shows a block diagram for a FIFO
design.

Instantiated
memory
module

wdata . wdata |
write / [
l write
—_—— eV - I |
r I I I
| | FIFO | | I I I I
I wptr I | I I I
WInCl linc g |4 : » | waddr raddr |q—y l_{g inc| 1MN¢
| |
I ginc M : I FIFO Memory I | [9inc :
wclk (Dual Port RAM) | rclk
: ' rst_n | : I : rst_n |
| 1 |
wrst_n I | e == I lrrst_n
. ! >< l !

Full @ === = = 1 [m= === 2 ' > Empty | |
<ML flag Ly syncronize || syncronize |1 I flag My
1| logic I to write clk | | I toread clk || — logic ||

| A 1 A4 j'\ A 1 ! ry
—-— s s - - s men | e - - ﬂh - e s o - - e e . -

welk Synchronizer relk
wrst_n modules (2) rrst_n

Figure 20 - FIFO Block Diagram - partitioned on clock boundaries

11.1 FIFO Writeand Read Operations

For the purposes of this paper, a FIFO write operation is an operation that |oads a data word into
the FIFO. FIFO write operations are sometimes called FIFO fill, FIFO load, etc.

For the purposes of this paper, a FIFO read operation is an operation that removes a data word
from the FIFO. FIFO read operations are sometimes called FIFO drain, etc.

Since full and empty flags are generated by pointers where at least one of the pointers must be
synchronized into a second clock domain, clock-cycle accurate assertion and de-assertion of full
and empty flagsis not completely possible.

SNUG San Jose 2001 22 Synthesis and Scripting Techniques for
Rev 1.1 Designing Multi-Asynchronous Clock Designs

One FIFO design technique isto insure that afull or empty flag is asserted exactly when full or
empty conditions occur, but de-asserting the flags might come afew clock cycles late. Thisis
sometimes referred to as pessimistic full and empty flags.

11.2 Pessimistic full and empty flags

A pessimistic full flagisafull signal that is asserted immediately when a FIFO becomes full but
is de-asserted late (it is not de-asserted until afew read-clock cycles later).

Because the write pointer does not have to be synchronized before testing for afull condition, the
full flag will be asserted immediately when the FIFO goes full. The FIFO might not actually be
completely full because the read pointer might have incremented but the new read pointer value
might not have been synchronized into the write clock domain. Using the block diagram shown
in Figure 20, the read pointer synchronized into the write clock domain is always two write
clocks behind the actual read pointer value, so the full flag might be asserted for two extrawrite
clocks. Thistypically is not a problem since the full flag is smply holding off transmission of
more data from the data sending source for two extrawrite clock cycles. Pointers being
synchronized into a new clock domain should be gray code counters for reasons explained in
sections 10.4 and section 10.5.

Similarly, because the read pointer does not have to be synchronized before testing for an empty
condition, the empty flag will be asserted immediately when the FIFO goes empty. The FIFO
might not actually be completely empty because the write pointer might have incremented but the
new write pointer value might not have been synchronized into the read clock domain. Using the
block diagram shown in Figure 20, the write pointer synchronized into the read clock domain is
always two read clocks behind the actual write pointer value, so the empty flag might be asserted
for two extraread clocks. Thistypicaly is not a problem since the empty flag is merely

informing the data receiver that datais not ready to be sent for another two read clock cycles.
Again, pointers being synchronized into a new clock domain should be gray code counters for
reasons explained in sections 10.4 and section 10.5.

11.3 Full & Empty

A FIFO isfull when both pointersare equal. A FIFO is also empty when both pointers are equal,
so the FIFO pointers should be one bit larger than is necessary to address the full memory range.
The extrabit is used as aflag to help determine if the FIFO is empty or full. If the extra, pointer
MSBs are equal, it means that the FIFO pointers have wrapped back to address 0 an equal
number of times and if the rest of the FIFO bits are equal, the FIFO is empty. If the extra, pointer
MSBs are not equal, it means that the write pointer has wrapped back to address 0 one more time
than the read pointer and if the rest of the FIFO bits are equal, the FIFO isfull.

SNUG San Jose 2001 23 Synthesis and Scripting Techniques for
Rev 1.1 Designing Multi-Asynchronous Clock Designs

12.0 Simulation I ssues

As mentioned in section 4.0, signals crossing clock boundaries through a synchronizer will
experience setup and hold violations. That is why synchronizers are added to adesign, to filter
out the metastability effects of asignal that changestoo close to the rising edge of anew clock
domain clock signal.

When doing gate-level simulations on a multi-clock design, the ASIC library models of flip-flops
are modeled with setup and hold time expressions to match the timing specifications of the actual
flip-flops. ASIC libraries typicaly model flip-flopsto drive X's (unknowns) on the flip-flop
outputs when atiming violation occurs. When simulating gate-level synchronizers, setup and
hold time violations might cause ASIC libraries to issue setup and hold time error messages and
the offending signals are frequently driven to an X value. These X-values propagate to the rest of
the design causing problems when trying to verify the functionality of the entire gate-level

design.

Most Verilog ssmulators have a command option to ignore al timing checks, but thiswould also
ignore the desired timing checks for the rest of the design.

It is possible to change the setup and hold time setting to zero for any ASIC library flip-flop that
isused in a synchronizer, but that would cause all setup and hold time checks of al instances of
that same type of flip-flop to be set to zero, including the flip-flops that you might want to use to
test the rest of the design.

Y ou could make copies of flip-flops from an ASIC library and store them into anew Verilog
library with different names, set to zero al setup and hold times, then modify the design gate-
level netlist, replacing al first stage synchronizer ASIC library flip-flops with the modified
library flip-flops without timing checks, but this could be an error prone and tedious process that
might have to be repeated each time anew netlist is generated or it might require the creation of a
makefile and scripts to automatically make the modifications each time anew netlist is

generated.

A clever way to approach this problem suggested by Bhatnagar[7] is to use Synopsys commands
to modify the SDF backannotation of the setup and hold time on just the first stage flip-flop cells
in the design. Bhatnagar points out that the SDF file is instance based and therefore targeting the
setup and hold times for the offending cells is more easily accomplished. Bhathagar notes:

Instead of manually removing the setup and hold-time constructs from the SDF file, a
better way isto zero out the setup and hold-times in the SDF file, only for the
violating flops, i.e., replace the existing setup and hold-time numbers with zero's.

Bhatnagar further points out that setup hold times of zero means that there can be no timing
violation, therefore no unknowns propagated to the rest of the design. The following dc_shell
command, given by Bhatnagar, is used to make setup and hold times zero:

SNUG San Jose 2001 24 Synthesis and Scripting Techniques for
Rev 1.1 Designing Multi-Asynchronous Clock Designs

set_annotated check 0 -setup -hold -from REG1/CLK -to REG1l/D

Using a creative naming convention for the output of the first stage flip-flop of a synchronizer
might make wild card expressions possible to easily backannotate all first stage flip-flop SDF
setup and hold time values to zero using very few dc_shell commands.

13.0 Conclusions

Completely synchronous one-clock design techniques are well known. Synthesis tools do their
best work on synchronous designs. Timing analysis tools are designed to report timing problems
on one-clock synchronous designs. Synthesis scripts are easy to create for one-clock synchronous
clock designs. The techniquesin this paper are aimed at making the design look like multiple
single clock designs!

e Partitioning non-synchronizer blocks so that there is only one clock per module permits
easy verification of correct timing by creating clock-domain sub-blocks that can be more
easily verified with static timing analysis tools.

e Partitioning synchronizer blocksto permit inputs from one and only one clock domain and
clocking the signals with only one asynchronous clock creates manageable synchronizer sub-
blocks that can also be easily timed.

e A clock-oriented naming convention can be useful to help identify signals that need to be
timed within the different asynchronous clock domains.

e Multiple control signals crossing clock domains require special attention to ensure that all
control signals are properly sequenced into a new clock domain.

The techniques described in this paper were devel oped to facilitate robust development and
verification of multi-clock designs.

References

[1] William J. Dally and John W. Poulton, Digital Systems Engineering, Cambridge
University Press, 1998, pg. 468.

[2] William J. Dally and John W. Poulton, Digital Systems Engineering, Cambridge
University Press, 1998, pp. 462-513.

[3] William J. Dally and John W. Poulton, Digital Systems Engineering, Cambridge
University Press, 1998, pp. 469-470.

SNUG San Jose 2001 25 Synthesis and Scripting Techniques for
Rev 1.1 Designing Multi-Asynchronous Clock Designs

[4] Samir Palnitkar, Verilog HDL, A Guide to Digital Design and Synthesis, Sunsoft Press A
Prentice Hall Title, 1996, pg. 193.

[5] Steve Golson, personal communication.
[6] ESNUG #281 - http://www.deepchip.com/posts/0281.html

[7] Himanshu Bhatnagar, Advanced ASIC Chip Synthesis, Kluwer Academic Publishers,
1999, pp. 202-203.

Synopsys is aregistered trademark of Synopsys, Inc.

Design Analyzer, DesignTime, PrimeTime and Synopsys Design Compiler are trademarks of
Synopsys, Inc.

Author & Contact | nformation

Cliff Cummings, President of Sunburst Design, Inc., is an independent EDA consultant and
trainer with 19 years of ASIC, FPGA and system design experience and nine years of Verilog,
synthesis and methodol ogy training experience.

Mr. Cummings, a member of the IEEE 1364 Verilog Standards Group (V SG) since 1994, chaired
the VSG Behaviora Task Force, which was charged with proposing enhancements to the Verilog
language. Mr. Cummingsis also amember of the IEEE Verilog Synthesis Interoperability
Working Group.

Mr. Cummings holds a BSEE from Brigham Y oung University and an M SEE from Oregon State
University.

E-mail Address: cliffc@sunburst-design.com
This paper can be downloaded from the web site: www.sunburst-design.com/papers

(Data accurate as of March 7™, 2001)

SNUG San Jose 2001 26 Synthesis and Scripting Techniques for
Rev 1.1 Designing Multi-Asynchronous Clock Designs

