
XORP BGP Test Harness

Version 0.1

XORP Project
International Computer Science Institute

Berkeley, CA 94704, USA
feedback@xorp.org

December 11, 2002

1 Introduction

This document describes a test harness that was built primarily to test the XORP
BGP implementation. It may be possible to augment the harness to use it for testing
other protocols.

A single BGP process is placed in the harness and tests are performed on it.
The tests can range from testing the decision process to verifying that a session is
dropped when the hold timer expires.

Not all of the features mentioned below have been implemented yet. Section 6
has a list of these features.

2 Requirements

A major requirement was to allow the testing of any BGP process, not just our own.
In the case of our own BGP process it was essential that regression tests could be
run and results verified totally from within scripts. Without the need for any man-
ual configuration. The XORP BGP regression tests can be run directly from the
“Makefiles”.

The test harness supports testing at various levels:

� Decision process.

The BGP decision process can be tested by sending update packets to BGP.
Then verifying that the correct update packets are sent by the BGP process.

1

TCP
BGPPeer

Test
Peer
Test

Coordinator

Test Script

XRL

XRLXRL

TCP

Figure 1: Test harness processes.

The actual packets sent by the BGP process can be compared to expected
packets. Another way that the BGP decision process can be tested is by
testing the routing tables held at the peers.

� Low level testing.

Testing responses to deliberately corrupted packets.

� Load testing.

Testing reaction to introducing a large number of routes back to back.

� Timer testing.

Correct operation of timers such as the HOLD TIME timer.

3 Usage

Figure 1 shows a BGP process under test that is connected to two test peers. The
test harness has been split into a number of separate processes. The main reason

2

reset
target xorp 179
initialise attach peer1
initialise attach peer2
peer1 establish active true AS 1 keepalive true holdtime 0 id 10.10.10.10
peer1 assert established
peer2 establish active true AS 2 keepalive true holdtime 0 id 20.20.20.20
peer2 assert established

Figure 2: Establish BGP Sessions

for using multiple processes is that a third party BGP processes may not be able
to accept multiple connections from the same host (IP address). The harness was
simpler to implement by splitting functionality into separate processes.

The test harness consists of a coordinator process through which all interac-
tions with the harness are mediated. There are also one or more test peer’s. Each
test peer is capable of forming one BGP session with the BGP process under test.
The coordinator process communicates with the test peer’s using XRL’s [1]. The
coordinator process accepts commands via XRL’s from test scripts. Currently our
test scripts are written in the shell programming language. The scripts could be
written in any language. The full set of commands accepted by the coordinator
can be found in 4.1.

Figure 2 shows an example of a simple program that might be sent from a
test script to a coordinator. It is assumed that before the script is sent that all
the processes are already running. One important point to note is that due to the
asynchronous nature of XRL’s a command returning does not necessarily mean that
it has completed successfully. In the XORP test scripts there are delays between
certain operations. This example show the coordinator being reset, then its given
the hostname and port number of the BGP process under test. Then the coordinator
attaches to the two test peer’s peer1 and peer2, these are the XRL names by which
the test peer’s are known. The majority of the commands are sent to the test peer’s
themselves. In order to send a command to a test peer the command is preceded
by the test peer name. In our example each test peer forms a session with the
BGP process and then the assert command is used to assert that a session is still
established. As noted above the establish command completing does not mean that
a session was established. Of course attempting to send a packet on a session that
has not yet been established will generate an error.

The expect packet . . . command is used to create a queue of expected packets.
Whenever a packet arrives on a peer it is checked against the queue of expected
packets. If there are no expected packets on the queue then no action is taken. If

3

...
Update error, missing well known attribute.
peer1 expect packet notify 3 3
An update packet without an origin
peer1 send packet update aspath 1 nexthop 20.20.20.20 nlri 10.10.10.0/24
Delay
peer1 assert queue 0
...

Figure 3: Wait for a notify packet

...
peer1 trie recv lookup 212.174.196.0/24
peer1 trie recv lookup 212.174.196.0/24 aspath 1
...

Figure 4: Performing lookup in trie

there is a packet on the expect queue it is compared against the incoming packet,
if they match all is fine and the packet is removed from the queue. If the incoming
packet does not match the packet at the head of the queue then an error is flagged
and the non matching packet is saved. At the end of a set of tests the assert queue
command can be used to verify that queue is at the expected length. If an error has
occurred this is the point at which the non matching packet and the expected packet
are returned, along with an error status. Figure 3 is a example of a code fragment
that is waiting for a notify packet on peer1. A notify packet is added to the queue
of expected packets, then an update packet without an origin is sent to the BGP
process. An update packet without an origin is an error and should generate the
notify packet that we are waiting for. Note that it is the responsibility of test script
to add a delay between sending the update packet and the assert.

Each peer has two tries associated with it, a sent and a received trie. Each
update packet that is sent to, or received from, the BGP process is passed to the ap-
propriate trie. The update packet is processed and saved if it contains any NLRI’s.
Update packets containing only WITHDRAW’s are not saved at this time. At this
time two types of lookups can be performed on a trie (Figure 4). If a lookup fails
then an error is returned. A test might therefore involve sending many update
packets from different peers and then verifying that the routing tables at the vari-
ous peers are correct. Saving the update packets in the tries makes it possible to
dump the routing tables.

4

4 Commands

4.1 COORD XRL’s
� Command(”command string”)

Accept commands via XRL’s.

� Pending()

Returns true while there are any uncompleted commands. Can be used to
poll the coordinator to verify that the previous command has completed.

4.1.1 Commands currently accepted by coord

� reset

Reset all the state in the coordinating process.

� target � hostname � � port �

The BGP process under test.

� initialise attach
�
create peername

Form an association with a test peer. If the second argument is attach then
it is assumed that the test peer is already running. If the second argument is
create then the test peer is started (not currently supported).

4.1.2 Peer specific commands

� connect

Connect to the target

� listen

Listen for a connection from the target.

� establish active � true/false � AS � value � keepalive � true/false � holdtime
� value � id � ipv4 �

The active, AS, keepalive, holdtime and id arguments are optional. Active
defaults to being true and actively makes a connection, setting active to false
sets up a listener. The AS value is recommended if a connection is wanted.

� send packet update origin � num � aspath � path � nexthop � ip � localpref
� num � nlri � net � withdraw � net �

5

� send dump mrtd update filename

Given a file in mrtd dump format send the update packets in this file.

� trie � recv/sent � lookup � net �

Test to see if this net is in the trie.

� trie � recv/sent � lookup � net � not

Test to see if this net is not in the trie.

� trie � recv/sent � lookup � net � aspath � path �

Test to see if this net is in the trie and associated with the provided AS path.

� expect packet notify � error code � � sub error code �

Place a notification packet on the expect queue. The � error code � is manda-
tory. The � sub error code � is optional.

� expect packet update origin � num � aspath � path � nexthop � ip � localpref
� num � nlri � net � withdraw � net �

Place an update packet on the expect queue.

� expect packet open asnum � value � bgpid � ipv4 � holdtime � value �

Place an open packet on the expect queue. All fields shown are mandatory.

� expect packet notify

Place a notify packet on the expect queue.

� assert queue � queue length �

Check the queue length of the expect queue. Every message that matches
removes an entry from the queue. If an error has previously occurred then
this call will return the error. The length of the queue check is optional.

� assert established

Verify that a session has actually been established. Some tests can pass with-
out a BGP process being present. These tests require this interface.

� dump � recv/sent � � mtrd/text � � traffic/routeview/current/debug � � filename �

A mechanism for saving conversations or dumping routing tables. The re-
ceived and sent cases can be dealt with independently. Four types of dumps
are supported:

6

1. Traffic.

The is basically all the traffic which is sent and received. The dump-
ing can be disabled by making a call with the � filename � argument
removed.

2. Routeview.

The current state of the routing table.

3. Current.

Trawls through the routing table and dumps all the update packets that
have caused entries in the routing table. The packets are dumped in the
order in which they arrived. This is only an approximation as update
packets containing only withdraws will not be saved.

4. Debug.

Visit all nodes in the trie and dump the update packet that was responsi-
ble for this entry. Update packets can have multiple NLRI’s associated
with them so a packet can be in the dump many times.

The save file can be either in mtrd dump format or in xorp text format.

4.2 TEST PEER XRL’s

Commands that are accepted by the test peer.

� Register(”coord”)

This is an external registration to the test peer. All packets received by the
test peer are sent to the ”coord”.

� Packetisation(”bgp”)

Tell the test peer to treat incoming packets as BGP packets packetise them
accordingly. Otherwise just packetise the the packets the way they appear
from the connection.

� Connect(”host”, ”port”)

Connect to the named host and port.

� Listen(”address”, ”port”)

Listen for connections on this address and port.

� Send(”Data”)

Send data on the TCP connection.

7

� Disconnect()

Drop the current TCP connection.

� Terminate()

Terminate the process.

4.3 TEST PEER CLIENT XRL’s
� Packet(”peer”, ”status”, ”time”, ”data”)

– ”peer”

The peer that the packet came from.

– ”status”

If the remote peer had been asked to perform packetisation. Then if
a bad message is received signify this. Also after a bad is received
packetisation is disabled.

– ”time”

The time when the packet was received in micro seconds since 1970-1-1.

– ”data”

The raw data that was read on the connection.

5 Outstanding Issues
� At the time of writing the harness has only been used against the XORP

BGP process. There is no reason to believe that it could not be used against
implementations.

6 Not yet implemented or TODO list
� Constructing corrupted packets.

� Dumping current and routeviews.

References

[1] XORP Inter-Process Communication Library. XORP technical document.
http://www.xorp.org/.

8

