
XORP Inter-Process Communication Library
Overview

Version 0.2

XORP Project
International Computer Science Institute

Berkeley, CA 94704, USA
feedback@xorp.org

March 10, 2003

Abstract

Extensibility and robustness are key goals of the eXtensible Open Router
Project (XORP). A step towards these goals is separating the tasks of router
in multiple userland programs. The programs may need to communicate with
the kernel and may need to communicate across multiple hosts in the case of
a distributed router. We have developed an asynchronous remote procedure
call mechanism that is capable of working with multiple transport protocols
between remote hosts and can leverage existing IPC mechanisms within a
single host. This note documents the initial design and directions it may
take.

1 Introduction

Robustness and extensibility are two of the goals of the XORP project. One way a
router can achieve robustness is to run routing protocols in protected environments,
such as separate userland processes on a modern operating system. And one way
a router can achieve extensibility is to be independent of the details about where
those routing processes are running and what the composition of the forwarding
plane is. The routing processes and network interfaces could be running on one
machine or distributed across a cluster of machines that appear as single router.
A necessary feature once routing protocols are running in distinct processes and
potentially on distinct machines is an inter-process communication mechanism.

1

In contrast to traditional inter-process communication schemes, the scheme em-
ployed in the XORP project can utilize multiple transport protocols and potentially
communicate with unmodified components through these protocols, for instance
SNMP or HTTP.

The lofty goals of XORP’s Inter-Process Communication (XIPC) scheme are:

• to provide all of the IPC communication mechanisms that a router is likely
to need, e.g.sockets, ioctl’s, sysV messages and shared memory.

• to provide a consistent and transparent interface irrespective of the underly-
ing transport mechanism used.

• to transparently select the appropriate IPC mechanism when alternatives ex-
ist.

• to provide an asynchronous interface.

• to be efficient.

• to potentially wrapper communication with non-XORP processes, e.g.HTTP
and SNMP servers.

• to be renderable in human readable form so XORP processes can read and
write commands from configuration files.

The XIPC goals are realized through XORP Resource Locators (XRLs). An
XRL describes a procedure call. A resolver process, the Finder, translates XRLs
into methods for inter-process communication. Each XRL has a textual description
and each XORP process supports multiple XRL call interfaces, each comprised of
a group of related XRLs that implement some aspect of the processes exported
functionality. When a XORP process starts, it registers its supported XRLs and
transport protocols with the Finder. The Finder is then able to inform processes
with sufficient privileges how to resolve those XRLs.

The XIPC library consists of a set of routines for building and manipulating
XRLs, for dispatching and handling the responses from XRLs, and converting
XRLs to and from human readable text. This document describes XRLs, the XIPC
library, and the issues involved in its design. The internals of the library are subject
to change and some portions, such as access control, are not yet implemented in
the library.

In addition to the XIPC library, an interface definition language exists, together
with tools to translate these into callable C++ interfaces and into a set of C++
handler routines for handling the receipt of XRL calls. These tools are described in

2

document [1]. The tools reduce the amount of familiarity the working programmer
needs to have with the internals of the XIPC library. This document provides an
overview of the XIPC library and is the recommended starting point before using
the library.

2 XORP Resource Locators (XRL’s)

The mechanism we’ve settled on for IPC within XORP processes is mediated
through Xorp Resource Locators (XRL’s). An XRL describes a procedure call.
It comprises the protocol family to be used for transport, the arguments for the
protocol family, the interface of the target being called and its version, the method,
and an argument list. Examples of XRLs in their human readable forms are shown
in figure 1. The existence of a human readable form for XRLs is chiefly a conve-
nience for humans who need to work with XRLs and not indicative of how they
work internally.

Resolved and unresolved forms of the same are XRL are depicted in figure 1.
The unresolved form is the starting point for the majority of inter-process com-
munication. In the unresolved form the protocol family is set to “finder” and the
protocol parameters set to the target name that the XRL call is intended for. A
process wishing to dispatch an XRL for the first time passes the unresolved XRL
to the Finder, which returns the resolved form with the appropriate protocol family
and protocol family arguments. The finder may also modify the other components
of the XRL, but doesn’t usually do so. This functionality may be useful when
supporting backwards compatibility of interfaces, i.e.the Finder could modify the
interface number and method name.

The resolved forms of XRLs are typically maintained in a client side cache so
the Finder need not be consulted for each XRL dispatch.

3

(a) Unresolved form:

finder://fea/fti/0.1/add_route?net:ipv4net=10.0.0.1/8&gateway:ipv4=192.150.187.1
+----- +-- +-- +-- +-------- +--
| | | | | |
| | | | Method Arguments
| | | |
| | | Interface version
| | |
| | Interface Name
| |
| Protocol Parameters
|
Protocol Family

(b) Resolved form:

stcp://192.150.1.5:1992/fti/0.1/add_route?net:ipv4net=10.0.0.1&gateway:ipv4=192.150.1.1
+--- +-------------- +-- +-- +-------- +--
| | | | | |
| | | | Method Arguments
| | | |
| | | Interface version
| | |
| | Interface Name
| |
| Protocol Parameters
|
Protocol Family

Figure 1: Human readable XRL forms.

4

3 Components of XRL Framework

XRL an inter-process call that is transparent to the underlying transport method.

Finder the process that co-ordinates the resolution of target names into a parseable
form to find the Xrl Protocol Family Listener.

XRL Router an object responsible for dispatching and receiving XRL requests.
They manage all the underlying interactions and are the interface that users
are expected to use for XRL interactions.

Finder Client an object associated with an XRL Router that manages the com-
munication with the Finder.

XRL Protocol Family a supported transport mechanism for the invoked XRL.

XRL Protocol Family Sender an entity that dispatches XRL requests and han-
dles responses. Senders are created based on Finder lookup’s of the appro-
priate communication mechanism.

XRL Protocol Family Listener an entity that listens for incoming requests, dis-
patches the necessary hook, and sends the responses. When Listeners are
created they register the appropriate mapping with the Finder so that corre-
sponding Senders can be instantiated to talk with them.

The kdoc documentation provides details of the particular classes.

References

[1] XRL Interfaces: Specification and Tools. XORP technical document.
http://www.xorp.org/.

5

