
XRL Interfaces: Specifications and Tools

Version 0.2

XORP Project
International Computer Science Institute

Berkeley, CA 94704, USA
feedback@xorp.org

March 10, 2003

Abstract
XORP Resource Locators are the XORP projects preferred means for inter-process communication.

A description of the XRL’s can be found in [1]. This document describes an important aspect of the XRL
world: the specification of XRL Interfaces and Targets. Following these specifications this document
then describes tools that generate XRL marshalling and unmarshalling routines and assist in common
case XRL handling.

1 Introduction

Up until the interface specification language and tools described here, only a low-level API was available
for dispatching and handling XRL requests. The primary goal of the interface specification language and
tools is to make the common case XRL code less cumbersome and more consistent. In addition, the in-
terface specification language embeds versioning information which can be used to maintain backwards
compatibility as interface develop and minimize conflicts following revisions.

2 Terminology

We define an XRL Target as something that XRL requests can be directed to in order to be executed. Multiple
XRL targets can exist within a single process, though there will typically be one target per process. Each
XRL Target has an associated name and a set of IPC mechanisms that it supports. At start-up each target
registers its name and IPC mechanisms with the Finder, so other processes are able to direct requests to it.

We define an XRL Interface to be a set of related methods that an XRL Target would implement. Each
XRL Interface is uniquely identified by a name and version number. An XRL Target will nearly always
implement multiple interfaces and potentially multiple versions of particular interface. For instance, every
XRL Target could implement a process information interface that would return information about the process
hosting the target. Each XRL Target will implement interfaces specific to their field of operation: a routing
process would implement the “routing process interface” so that the RIB process can make identity-agnostic
XRL calls for tasks like redistributing a route to another routing protocol.

We define an XRL Interface Client to be a process that accesses a particular XRL Interface.
These definitions are illustrated in figure 1.

1

R
I

C
L
I

B

create_area

create_key

add_route

remove_route

...

...

Routing Protocol/1.0

...

...

Routing Information Base/1.0

O

rm_igp_route

add_igp_route

S
P
F

OSPF Configuration/1.0

...

...

Figure 1: Example XRL Targets and clients: OSPF, RIB, and CLI. OSPF and RIB processes are XRL
targets. OSPF supports XRL interfaces “OSPF Configuration/1.0” and “Routing Protocol/1.0”: the RIB is a
client of the former interface and the CLI a client of the latter.

2

3 Interface and Target Specifications

3.1 Interface Specifications

An interface is declared using the interface keyword and a set of XRL methods associated with it.

interface <interface name>/<interface version> { . . . xrl method list . . . }

Each item in the XRL Method list consists of a method name, its dispatch arguments, and return argu-
ments specified in the default XRL text form. An example of this is shown in listing 1.

Listing 1: Example Xrl Interface Specification

/* $XORP: xorp/xrl/interfaces/test.xif,v 1.1.1.1 2002/12/11 23:56:18 hodson Exp $ */

/*
* This is a test file with XRL interface.
*/

interface test/1.0 {
/**
* Print hello world
*/
print_hello_world

/**
* Print "hello world" and a user supplied greeting.
* @param msg greeting to be printed.
*/

print_hello_world_and_message ? msg:txt

/**
* Count number of greetings available
*/

get_greeting_count -> num_msgs:i32

/**
* Get greeting
*
* @param greeting_num index of greeting
*
* @param greeting text of greeting.
*/

get_greeting ? greeting_num:i32 -> greeting:txt

/**
* Something that always fails.
*/

shoot_foot
}

3

Whitespace can be used to separate XRL Atoms in the description and backslashes can be used to
continue XRL descriptions across multiple lines. [NB This usage of spacing is not currently supported
elsewhere in the project - to be fixed.]

C-style comments are valid anywhere with interface specification files and kdoc comments can be used
to describe the XRL, its arguments, and return values. Each kdoc comment is associated with the next XRL
found in a specification file. All kdoc tags are valid with the exception of @return which is used by kdoc to
describe C/C++ single return values (for XRL’s return values should be document with @param since they
are named and groups of values can be returned).

By convention, XRL Interfaces are specified in .xif files and these are located in the
xorp/xrl/interfaces directory.

3.2 Target Specifications

XRL Targets are declared in .tgt files using:

target < target name > implements <interface> [, <interface> . . .]

Target specification files use the standard C include primitive to include the appropriate interface specifi-
cations. An example is shown in listing 2 and further examples can be found in the xorp/xrl/targets
directory.

Listing 2: Example XRL Target specification.

/* $XORP: xorp/xrl/targets/test.tgt,v 1.1.1.1 2002/12/11 23:56:19 hodson Exp $ */

#include "common.xif"
#include "test.xif"

target test implements common/0.1, test/1.0

4 Tools

We use XRL Interface and XRL Target specifications to generate code that takes some of the tedium out
of writing XRL related code. We have written two scripts: clnt-gen and tgt-gen that generate C++ header
files and libraries and also produce a list of XRL’s for each XRL Target.

4.1 clnt-gen : XRL Interface Client Generator

clnt-gen parses Xrl Interface specifications and generates a header and related library source file to simplify
invoking the XRL’s of that interface. Each XRL Interface specification generates an XRL Interface Client
C++ class. The generated C++ class has a send method for each XRL in the XRL interface specification and
takes care of argument marshalling when the XRL is dispatched and when it returns.

A fragment of generated code is shown in listing 3. This code is generated from the Xrl Interface
presented in listing 1. The Xrl Interface Client C++ has a constructor that takes a XrlRouter object that
holds the necessary state to correlate the XRLs being called with the return values. Each XRL specified in
the XRL Interface has a send method. The send method takes the name of Xrl Target, the native C++/XORP
arguments to be passed as XRL arguments, and a callback argument to be invoked when the XRL returns.

4

The type of the XRL callback is determined by the return type specification of the XRL. Since the syntax
for the callback is awkward, a typedef is used in the class method. The relevant typedef appears immediately
before each send method. When called, the first callback argument of the callback is an XrlError object.
If the value is XrlError::OKAY() then return values from the XRL will be pointed to by the following
arguments (e.g., const string* for string argument). Otherwise, the return value pointers will be NULL since
there is no data available for return values when errors occur.

The interested reader should refer to the directory xorp/xrl/tests/ for examples using the client
interface.

5

Listing 3: Fragment of a C++ XRL Client.

class XrlTestV1p0Client {
public:

XrlTestV1p0Client(XrlRouter* r) : _router(r) {}
virtual ˜XrlTestV1p0Client() {}

/* ... */

typedef XorpCallback2<void, const XrlError&, const string*>::RefPtr CB3;
/**
* Send Xrl intended to:
*
* Get greeting
*
* @param tgt_name Xrl Target name
*
* @param greeting_num index of greeting
*/

void send_get_greeting(
const char* target_name,
const int32_t& greeting_num,
const CB3& cb

);

/* ... */
};

4.2 tgt-gen : XRL Target Generator

tgt-gen takes an XRL target specification and generates list of XRL’s supported by the target and a class to
be sub-classed that takes care of argument marshalling and unmarshalling and sanity checks.

The XRL’s for the test/1.0 that was target presented in listing 2 are shown in listing 4. Notice that
the name of each XRL has the interface and version that it belongs to prepended. This is the mechanism
used to support the concept of interfaces and to support versioning.

As far as the generated base class is concerned, it implements a set of pure-virtual Xrl handler methods
each of which is associated with handling a specific XRL. The implementor derives from the base class,
implementing the pure-virtual methods. When an XRL request is received, it will be forwarded to the
derived class’s implementation handler method. The base class takes care of marshalling and unmarshalling
Xrl arguments and error handling.

The design to derive a class to implement the handler functions was, in part, taken to encourage (force)
people to implement handlers for all the XRL’s specified for the XRL Target. In addition, implementors can
add whatever state they require in dispatching XRL’s to the handler class, ie pointers or references to data
structures.

An example of a generated target header is shown in listing 5. Notice that the input Xrl arguments are
const reference arguments to the C++ method, and the Xrl return arguments are just reference arguments.

6

Listing 4: Example XRL list generated from Xrl Target specification.

/*
* Copyright (c) 2001-2003 International Computer Science Institute
* See LICENSE file for licensing, conditions, and warranties on use.
*
* DO NOT EDIT THIS FILE - IT IS PROGRAMMATICALLY GENERATED
*
* Generated by ’../scripts/tgt-gen’.
*
* $XORP: xorp/xrl/targets/test.xrls,v 1.2 2003/03/10 23:01:36 hodson Exp $
*/

/**
* Pure-virtual function that needs to be implemented to:
*
* Get name of Xrl Target
*/

finder://test/common/0.1/get_target_name->name:txt

/**
* Pure-virtual function that needs to be implemented to:
*
* Get version string from Xrl Target
*/

finder://test/common/0.1/get_version->version:txt

/**
* Pure-virtual function that needs to be implemented to:
*
* Print hello world
*/

finder://test/test/1.0/print_hello_world

/**
* Pure-virtual function that needs to be implemented to:
*
* Print "hello world" and a user supplied greeting.
*
* @param msg greeting to be printed.
*/

finder://test/test/1.0/print_hello_world_and_message?msg:txt

/**
* Pure-virtual function that needs to be implemented to:
*
* Count number of greetings available
*/

finder://test/test/1.0/get_greeting_count->num_msgs:i32

/**
* Pure-virtual function that needs to be implemented to:
*
* Get greeting
*
* @param greeting_num index of greeting
*
* @param greeting text of greeting.
*/

finder://test/test/1.0/get_greeting?greeting_num:i32->greeting:txt

/**
* Pure-virtual function that needs to be implemented to:
*
* Something that always fails.
*/

finder://test/test/1.0/shoot_foot 7

Listing 5: Example Xrl Target C++ Base Class

/*
* Copyright (c) 2001-2003 International Computer Science Institute
* See LICENSE file for licensing, conditions, and warranties on use.
*
* DO NOT EDIT THIS FILE - IT IS PROGRAMMATICALLY GENERATED
*
* Generated by ’../scripts/tgt-gen’.
*
* $XORP: xorp/xrl/targets/test_base.hh,v 1.6 2003/03/10 23:01:36 hodson Exp $
*/

#ifndef __XRL_INTERFACES_TEST_BASE_HH__
#define __XRL_INTERFACES_TEST_BASE_HH__

#undef XORP_LIBRARY_NAME
#define XORP_LIBRARY_NAME "XrlTestTarget"

#include "libxorp/xlog.h"
#include "libxipc/xrl_cmd_map.hh"

class XrlTestTargetBase {
protected:

XrlCmdMap* _cmds;

public:
XrlTestTargetBase(XrlCmdMap* cmds) : _cmds(cmds) { add_handlers(); }
virtual ˜XrlTestTargetBase() { remove_handlers(); }

inline const string& name() const { return _cmds->name(); }
inline const char* version() const { return "test/0.0"; }

protected:

/**
* Pure-virtual function that needs to be implemented to:
*
* Get name of Xrl Target
*/

virtual XrlCmdError common_0_1_get_target_name(
// Output values,
string& name) = 0;

/**
* Pure-virtual function that needs to be implemented to:
*
* Get version string from Xrl Target
*/

virtual XrlCmdError common_0_1_get_version(
// Output values,
string& version) = 0;

/**
* Pure-virtual function that needs to be implemented to:
*
* Print hello world
*/

virtual XrlCmdError test_1_0_print_hello_world() = 0;

/**
* Pure-virtual function that needs to be implemented to:
*

8

* Print "hello world" and a user supplied greeting.
*
* @param msg greeting to be printed.
*/

virtual XrlCmdError test_1_0_print_hello_world_and_message(
// Input values,
const string& msg) = 0;

/**
* Pure-virtual function that needs to be implemented to:
*
* Count number of greetings available
*/

virtual XrlCmdError test_1_0_get_greeting_count(
// Output values,
int32_t& num_msgs) = 0;

/**
* Pure-virtual function that needs to be implemented to:
*
* Get greeting
*
* @param greeting_num index of greeting
*
* @param greeting text of greeting.
*/

virtual XrlCmdError test_1_0_get_greeting(
// Input values,
const int32_t& greeting_num,
// Output values,
string& greeting) = 0;

/**
* Pure-virtual function that needs to be implemented to:
*
* Something that always fails.
*/

virtual XrlCmdError test_1_0_shoot_foot() = 0;

private:
const XrlCmdError handle_common_0_1_get_target_name(const Xrl& x, XrlArgs* a);

const XrlCmdError handle_common_0_1_get_version(const Xrl& x, XrlArgs* a);

const XrlCmdError handle_test_1_0_print_hello_world(const Xrl& x, XrlArgs* a);

const XrlCmdError handle_test_1_0_print_hello_world_and_message(const Xrl& x, XrlArgs* a);

const XrlCmdError handle_test_1_0_get_greeting_count(const Xrl& x, XrlArgs* a);

const XrlCmdError handle_test_1_0_get_greeting(const Xrl& x, XrlArgs* a);

const XrlCmdError handle_test_1_0_shoot_foot(const Xrl& x, XrlArgs* a);

void add_handlers()
{

if (_cmds->add_handler("common/0.1/get_target_name",
callback(this, &XrlTestTargetBase::handle_common_0_1_get_target_name)) == false) {
XLOG_ERROR("Failed to xrl handler finder://test/common/0.1/get_target_name");

}
if (_cmds->add_handler("common/0.1/get_version",

callback(this, &XrlTestTargetBase::handle_common_0_1_get_version)) == false) {
XLOG_ERROR("Failed to xrl handler finder://test/common/0.1/get_version");

}

9

if (_cmds->add_handler("test/1.0/print_hello_world",
callback(this, &XrlTestTargetBase::handle_test_1_0_print_hello_world)) == false) {
XLOG_ERROR("Failed to xrl handler finder://test/test/1.0/print_hello_world");

}
if (_cmds->add_handler("test/1.0/print_hello_world_and_message",

callback(this, &XrlTestTargetBase::handle_test_1_0_print_hello_world_and_message)) == false) {
XLOG_ERROR("Failed to xrl handler finder://test/test/1.0/print_hello_world_and_message");

}
if (_cmds->add_handler("test/1.0/get_greeting_count",

callback(this, &XrlTestTargetBase::handle_test_1_0_get_greeting_count)) == false) {
XLOG_ERROR("Failed to xrl handler finder://test/test/1.0/get_greeting_count");

}
if (_cmds->add_handler("test/1.0/get_greeting",

callback(this, &XrlTestTargetBase::handle_test_1_0_get_greeting)) == false) {
XLOG_ERROR("Failed to xrl handler finder://test/test/1.0/get_greeting");

}
if (_cmds->add_handler("test/1.0/shoot_foot",

callback(this, &XrlTestTargetBase::handle_test_1_0_shoot_foot)) == false) {
XLOG_ERROR("Failed to xrl handler finder://test/test/1.0/shoot_foot");

}
_cmds->finalize();

}

void remove_handlers()
{

_cmds->remove_handler("common/0.1/get_target_name");
_cmds->remove_handler("common/0.1/get_version");
_cmds->remove_handler("test/1.0/print_hello_world");
_cmds->remove_handler("test/1.0/print_hello_world_and_message");
_cmds->remove_handler("test/1.0/get_greeting_count");
_cmds->remove_handler("test/1.0/get_greeting");
_cmds->remove_handler("test/1.0/shoot_foot");

}
};

#endif /* __XRL_INTERFACES_TEST_BASE_HH__ */

References

[1] XORP Inter-Process Communication Library. XORP technical document. http://www.xorp.org/.

10

